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What are interdiction problems?

Key question motivating interdiction problems

How sensitive is a system wrt failure/destruction
of some of its components?

Interdiction analysis is about worst-case failures.

Learn how robust a system is.

Identify weakest spots
protect system,

attack/inhibit undesirable system/process.
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An early application: drug interdiction

One aspect of US “war on drugs”

Assist South American countries to
disrupt production and distribution
process of drugs.

How to achieve highest impact with
limited resources?

Good target: reduce flow of precursor
chemicals.

What rivers and roads should be
checked to best interdict drug flow?

3 / 28



Vaccination: interdict spread of a disease

S: susceptible

I: infected

R: recovered/removed

Who to vaccinate to best interdict the disease spreading process?
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Hospital infection control

Inhibit dissimination of germs source:Assimakopoulos [1987]

Supersource

Infected
patient

Personnel

Wet germs
reservoir

Patient
- hands
- clothes

Personnel
- hands
- clothes

Devices
- diagnosis
- therapy
- nursing

Devices
- floor
- wall
- furniture

Respiratory
tract

Blood

Wounds

Urinary
tract

Supersink

Sources Carriers Entry-points

Most cost effective way to block germ dissimination?
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Robustness of infrastructure

Protecting power grids against terrorists Salmeron et al. [2004]

What is highest impact of potential terrorist attack with limited resouces?

Robustness/redundancy of communication networks
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capacity

How many links/edges must fail to reduce bandwidth to < 3 for at least
one pair of nodes?
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Formalizing interdiction problems

G = (V ,E): network.

ν(G): opt. value of maximization problem on G.

c : E → Z≥0: interdiction costs (cost to remove edges).

B ∈ Z≥0: removal/attack budget.

e.g., max s-t flow on G for
some fixed edge capacities

min{ν((V ,E \ R)) | R ⊆ E , c(R)

c(R) :=
∑
e∈R

c(e)

≤ B}

To simplify, we will sometimes assume unit removal costs.

min{ν((V ,E \ R)) | R ⊆ E , |R| ≤ B}
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From min max to min via dualization
Consider max card. bipartite matching problem and its dual (min vertex cover).

v1

v2

v3

v4 v5

G = (V ,E)

e1

e2

e3

e4

e5

v1

v2

v3

v4 v5

A =

1 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 1 1
0 0 0 0 1





e1 e2 e3 e4 e5

v1

v2

v3

v4

v5

max 1T x
Ax ≤ 1

x ≥ 0

min 1T y
AT y ≥ 1

y ≥ 0

Task in unit-cost bibpartite matching interdiction

Remove B edges to minimize cardinality of max card. matching.

Dual problem: Remove B constraints in dual to minimize min card. vertex cover.
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Interdiction in terms of a math. program

A primal and dual problem for bipartite matching interdiction:

min
r∈{0,1}E

r(E)≤B

max (1− r)T x

Ax ≤ 1
x ≥ 0

min 1T y
AT y ≥ 1− r
1T r ≤ B

y ≥ 0
r ∈ {0, 1}E

Remarks

This formulation exploits down-monotonicity.

Notice: Dual is TU except for constraint 1T r ≤ B.

Resulting dual can often be interpreted as biobjective problem.
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Example reduction to biobjective problem

Consider maximum flow interdiction on an s-t planar graph:

u: arc capacities.

c: interdiction costs.

νmax
B (G): maximum flow value after best interdiction with budget B.
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Dualizing using planar duality

s-t cuts in primal (G) ↔ sD-tD paths in planar dual (G∗).
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To budgeted shortest path problem

∗

νmax
B (G) = min{λ′(P′) | P′ path from sD to tD in G′, c′(P′) ≤ B}

This is a budgeted shortest path problem (solvable in pseudopoly. time).
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Some approximation/hardness results
Interdiction of . . . Best known approx. ratio Hardness result

Shortest paths - APX-hardness
[ Khachiyan et. al, Th Comp Sys ’08]

Maximum flow - (2-pseudoapprox.)
[Burch et al., thematic book on int. ’03]

strongly NP-hard
[ Wood, Math & Comp Modeling, ’93],

[ Phillips, STOC’93]
Maximum flow on planar
graphs

FPTAS
[Phillips, STOC’93]

weakly NP-hard

MSTs

O(logm)
[ Frederickson & Solis-Oba, SODA’96]

O(1)
[ Z. FOCS’15 ]

strongly NP-hard
[F. & S.-O., SODA’96]

Matchings and some
packing problems

O(1)
[Dinitz & Gupta, IPCO’13]

strongly NP hard
[Z. et al., Disc Math ’10]

Connectivity PTAS [Z., OR Letters ’15] weakly NP-hard
. . .

Interdiction problems have been studied under various aspects:
Exact exponential-time algorithms.
(Mixed-)Integer mathematical programming formulations.
Fixed-parameter tracktability.
. . .
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Part II

Connectivity Interdiction
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Connectivity Interdiction

Given
G = (V ,E): undirected graph.

w : E → Z≥0: edge weights (capacities).

B ∈ Z≥0: removal/attack budget (# of edges we can remove).

ν(G): connectivity of G =

max{θ ≥ 0 | between any u, v ∈ V one can send θ units of flow}.
Goal
Minimize connectivity by removing B edges.
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Goal of this part of talk

On example of Connectivity Interdiction we present:

1 methods to approach interdiction problems,

2 different viewpoints on interdiction
enhance understanding of interdiction problems,

3 efficient algo to solve Connectivity Interdiction (with unit costs).
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From min-max to simple min (via dualization)

Recap: max-flow min-cut theorem

For s, t ∈ V : value of max s-t flow = size of min s-t cut.

⇒ connectivity of G: ν(G) = size of global min cut.
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Goal of Connectivity Interdiction (rephrased)

Remove B edges to minimize size of global min cut.
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Best strategy: attack single (target) cut

Different way to think about Connectivity Interdiction

Find best cut to attack, and decrease its value as much as possible.
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C

δ(C)

B = 2
τ = 1

Best way to attack target cut

Once target cut C ⊆ V is fixed remove B highest cap. edges in δ(C).

⇒∃ threshold weight τ s.t. all e ∈ δ(C) with w(e) > τ will be removed.
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Assume we knew optimal threshold weight τ

Remaining task: find cut C to attack.

For each edge e ∈ E , if e is part of the cut we attack, then
e get removed if w(e) > τ
e stays if w(e) ≤ τ
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B = 2
τ = 1

Er = {e ∈ E | w(e) > τ}
Es = {e ∈ E | w(e) ≤ τ}

Knowing τ , Connectivity Interdiction reduces to

min{w(δ(C) ∩ Es) | cut C with |δ(C) ∩ Er | ≤ B}.
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How to get the right τ?

Plan: simply try all “candidates” for τ

Consider all different weights (assume disjoint weights):

0 < w(e1) < w(e2) < · · · < w(em) = max weight.

1 For τ ∈ {0,w(e1), . . . ,w(em)}: Let

Es = {e ∈ E | w(e) ≤ τ},
Er = {e ∈ E | w(e) > τ}.

Compute optimal solution Cτ for

min{w(δ(C) ∩ Es) | cut C with |δ(C) ∩ Er | ≤ B}. (1)

will discuss later
how to solve this

2 Attack best cut Cτ among all computed cuts.

Above procedure solves problem by returning best cut to interdict.
Its runtime: (m + 1)× (time to solve (1)).
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Transformation to budgeted cut problem

min{w(δ(C) ∩ Es) | cut C with |δ(C) ∩ Er | ≤ B}.
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Introduce 2 lengths `1, `2 for
each edge e:

`1(e) =

{
w(e) if e ∈ Es,

0 if e ∈ Er .

`2(e) =

{
0 if e ∈ Es,

1 if e ∈ Er .

Problem transforms into: min{`1(δ(C)) | cut C with `2(δ(C)) ≤ B}.

this is a budgeted cut problem
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A closer look at budgeted cuts

Given

Graph G = (V ,E),

edge lengths `1, `2 : E → Z≥0,

budget B ∈ Z≥0.

Task (budgeted cut problem)

min

{
`1(δ(C))

∣∣∣∣ cut C with
`2(δ(C)) ≤ B

}

A biobjective viewpoint on budgeted cuts
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How to solve the budgeted cut problem?

`1

`2

B

corresponds to
optimal cut

x∗
b

a

Solid points are min-cuts for some
mixed length λ`1 + (1− λ)`2.

There is a mixed length `∗ for
which both a and b are optimal.

`∗-size of x∗ ≤ 2×min `∗-size.

i.e., x∗ is a 2-minimum cut wrt `∗

Suffices to find all 2-min cuts wrt `∗ to solve budgeted cut problem.

Back to single objective problem. Can be solved efficiently!

23 / 28



Finding min cuts . . . and beyond

Let’s start with easier prob.: How to find a min cut in a unit-weighted graph?

A randomized approach Karger [1993]

Repeat following step until 2 (super-)vertices are left.

Choose an edge uniformly at random and contract it.

Return cut defined by remaining 2 vertices.
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How likely is it to get some min cut that way

Algo returns C ⇔ no edge of δ(C) ever gets contracted.

Probab.: 1st contr. edge e1 is in δ(C)

min cut size = k ⇒ min degree ≥ k
⇒ m ≥ k · n/2.

Pr[e1 ∈ δ(C)] = |δ(C)|/m ≤ 2/n.
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What about later edge contractions?

When contracting i-th edge ei : only n + 1− i (super-)vertices left:

min deg. ≥ k ⇒ m ≥ k · (n + i − i)/2 ⇒ Pr[ei ∈ δ(C)] ≤ 2/(n + 1− i).

Pr[algo returns δ(C)] =
n−2∏
i=1

(1− Pr[ei ∈ δ(C)]) ≥
n−2∏
i=1

n − 1− i
n + 1− i

= 2/n(n − 1) ≥ 1/n2.

25 / 28



How to get 2-min cuts from that?

Summary of randomized procedure

A single run of algo returns any min cut C with probability ≥ 1/n2.

Implications

There are at most n2 min cuts.

n2 log n repetitions of algo finds all min cuts with prob. ≈ 1− 1/n.

Getting all 2-min cuts

Algorithm generalizes to general edge weights.
(Contract edge with prob. proportional to its weight.)

Analysis extends to 2-min cuts: any 2-min cut is returned with
prob. 1/n4.

n4 log n repetitions of algo finds all 2-min cuts with prob. ≈ 1− 1/n4.
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Summary of approach for conn. interd.

Dualize minimize min cut
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Budgeted min cut problem
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B x∗

Karger’s randomized algo
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Conclusions

Interdiction problems have many interesting applications.

Dualization: min-max problem min-min problem.

Threshold guessing: transformation to biobjective problem.

Special case: Connectivity Interdiction with unit removal costs

Can be rephrased as budgeted cut problem, which is efficiently solvable.
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