Analyzing Network Robustness via Interdiction Problems

Rico Zenklusen

ETH Zurich

What are interdiction problems?

Key question motivating interdiction problems

How sensitive is a system wrt failure/destruction of some of its components?

Interdiction analysis is about worst-case failures.

Learn how robust a system is.

Identify weakest spots protect system, attack/inhibit undesirable system/process.

An early application: drug interdiction

One aspect of US "war on drugs"

Assist South American countries to disrupt production and distribution process of drugs.

- How to achieve highest impact with limited resources?
- Good target: reduce flow of precursor chemicals.
- What rivers and roads should be checked to best interdict drug flow?

S: susceptible

1: infected

1: infected

1: infected

1: infected

1: infected

S: susceptible

1: infected

1: infected

Who to vaccinate to best interdict the disease spreading process?

Hospital infection control

Inhibit dissimination of germs

source:Assimakopoulos [1987]

Hospital infection control

Inhibit dissimination of germs

source:Assimakopoulos [1987]

Most cost effective way to block germ dissimination?

Robustness of infrastructure

Protecting power grids against terrorists

Salmeron et al. [2004]

What is highest impact of potential terrorist attack with limited resouces?

Robustness of infrastructure

Protecting power grids against terrorists

Salmeron et al. [2004]

What is highest impact of potential terrorist attack with limited resouces?

Robustness/redundancy of communication networks

How many links/edges must fail to reduce bandwidth to < 3 for at least one pair of nodes?

Formalizing interdiction problems

Formalizing interdiction problems

To simplify, we will sometimes assume unit removal costs.

$$\min\{\nu((V, E \setminus R)) \mid R \subseteq E, |R| \leq B\}$$

From min max to min via dualization

Consider max card. bipartite matching problem and its dual (min vertex cover).

Task in unit-cost bibpartite matching interdiction

Remove *B* edges to minimize cardinality of max card. matching.

Dual problem: Remove B constraints in dual to minimize min card. vertex cover.

Interdiction in terms of a math. program

A primal and dual problem for bipartite matching interdiction:

Remarks

- This formulation exploits down-monotonicity.
- ▶ Notice: Dual is TU except for constraint $1^T r \leq B$.
- Resulting dual can often be interpreted as biobjective problem.

Example reduction to biobjective problem

Consider maximum flow interdiction on an *s*-*t* planar graph:

u: arc capacities.

c: interdiction costs.

> $\nu_B^{\max}(G)$: maximum flow value after best interdiction with budget B.

Dualizing using planar duality

s-*t* cuts in primal (*G*) \leftrightarrow s^{D} - t^{D} paths in planar dual (*G*^{*}).

To budgeted shortest path problem

 $\nu_B^{\max}(G) = \min\{\lambda'(P') \mid P' \text{ path from } s^D \text{ to } t^D \text{ in } G', c'(P') \leq B\}$

This is a budgeted shortest path problem (solvable in pseudopoly. time).

Some approximation/hardness results

Interdiction of	Best known approx. ratio	Hardness result
Shortest paths	-	APX-hardness [Khachiyan et. al, Th Comp Sys '08]
Maximum flow	- (2-pseudoapprox.) [Burch et al., thematic book on int. '03]	strongly NP-hard [Wood, Math & Comp Modeling, '93], [Phillips, STOC'93]
Maximum flow on planar graphs	FPTAS [Phillips, STOC'93]	weakly NP-hard
MSTs	<i>O</i> (log <i>m</i>) [Frederickson & Solis-Oba, SODA'96] <i>O</i> (1) [Z. FOCS'15]	strongly NP-hard [F. & SO., SODA'96]
Matchings and some packing problems	O(1) [Dinitz & Gupta, IPCO'13]	strongly NP hard [Z. et al., Disc Math '10]
Connectivity	PTAS [Z., OR Letters '15]	weakly NP-hard

Interdiction problems have been studied under various aspects:

- Exact exponential-time algorithms.
- (Mixed-)Integer mathematical programming formulations.
- Fixed-parameter tracktability.

. . .

Part II

Connectivity Interdiction

Connectivity Interdiction

Given

- G = (V, E): undirected graph.
- $w: E \to \mathbb{Z}_{\geq 0}$: edge weights (capacities).
 - $B \in \mathbb{Z}_{\geq 0}$: removal/attack budget (# of edges we can remove).

$\nu(G)$: connectivity of G =

 $\max\{\theta \ge 0 \mid \text{between any } u, v \in V \text{ one can send } \theta \text{ units of flow}\}.$

Goal

Minimize connectivity by removing B edges.

• w: capacities

Goal of this part of talk

From min-max to simple min (via dualization)

Recap: max-flow min-cut theorem

For $s, t \in V$: value of max s-t flow = size of min s-t cut.

• w: capacities

From min-max to simple min (via dualization)

Recap: max-flow min-cut theorem

For $s, t \in V$: value of max s-t flow = size of min s-t cut.

 \Rightarrow connectivity of *G*: $\nu(G) =$ size of *global* min cut.

• w: capacities

From min-max to simple min (via dualization)

Recap: max-flow min-cut theorem

For $s, t \in V$: value of max s-t flow = size of min s-t cut.

 \Rightarrow connectivity of *G*: $\nu(G) =$ size of *global* min cut.

• w: capacities

Goal of Connectivity Interdiction (rephrased)

Remove *B* edges to minimize size of global min cut.

Best strategy: attack single (target) cut

Different way to think about Connectivity Interdiction

Find best cut to attack, and decrease its value as much as possible.

Best way to attack target cut

Once target cut $C \subseteq V$ is fixed \rightarrow remove *B* highest cap. edges in $\delta(C)$.

 $\Rightarrow \exists$ threshold weight τ s.t. all $e \in \delta(C)$ with $w(e) > \tau$ will be removed.

Assume we knew optimal threshold weight au

Remaining task: find cut C to attack.

For each edge $e \in E$, if e is part of the cut we attack, then

e get removed if $w(e) > \tau$ e stays if $w(e) \le \tau$

Knowing τ , Connectivity Interdiction reduces to

min{w($\delta(C) \cap E_s$) | cut C with $|\delta(C) \cap E_r| \leq B$ }.

How to get the right τ ?

Plan: simply try all "candidates" for τ

Consider all different weights (assume disjoint weights):

$$0 < w(e_1) < w(e_2) < \cdots < w(e_m) = max weight.$$

1 For
$$\tau \in \{0, w(e_1), ..., w(e_m)\}$$
: Let
► $E_s = \{e \in E \mid w(e) \le \tau\},$
► $E_r = \{e \in E \mid w(e) > \tau\}.$

will discuss later how to solve this

Compute optimal solution C_{τ} for

 $\min\{w(\delta(C) \cap E_s) \mid \text{ cut } C \text{ with } |\delta(C) \cap E_r| \le B\}.$ (1)

2 Attack best cut C_{τ} among all computed cuts.

How to get the right τ ?

Plan: simply try all "candidates" for au

Consider all different weights (assume disjoint weights):

$$0 < w(e_1) < w(e_2) < \cdots < w(e_m) = max weight.$$

1 For
$$\tau \in \{0, w(e_1), \dots, w(e_m)\}$$
: Let
• $E_s = \{e \in E \mid w(e) \le \tau\},$
• $E_r = \{e \in E \mid w(e) > \tau\}.$

will discuss later how to solve this

Compute optimal solution C_{τ} for

 $\min\{w(\delta(C) \cap E_s) \mid \text{ cut } C \text{ with } |\delta(C) \cap E_r| \le B\}.$ (1)

2 Attack best cut C_{τ} among all computed cuts.

Above procedure solves problem by returning best cut to interdict.

• Its runtime: $(m + 1) \times$ (time to solve (1)).

Transformation to budgeted cut problem

 $\min\{\mathrm{w}(\delta(\mathcal{C})\cap E_s) \mid \text{ cut } \mathcal{C} \text{ with } |\delta(\mathcal{C})\cap E_r| \leq B\}.$

Transformation to budgeted cut problem

$$\min\{\mathrm{w}(\delta(\mathcal{C})\cap E_s) \mid \text{ cut } \mathcal{C} \text{ with } |\delta(\mathcal{C})\cap E_r| \leq B\}.$$

Problem transforms into:

$$\min\{\ell_1(\delta(\mathcal{C})) \mid \text{cut } \mathcal{C} \text{ with } \frac{\ell_2}{\delta(\mathcal{C})} \leq B\}.$$

[↑]— this is a budgeted cut problem

A closer look at budgeted cuts

Given

Task (budgeted cut problem)

- Graph G = (V, E),
- edge lengths $\ell_1, \ell_2 : E \to \mathbb{Z}_{\geq 0}$,
- ▶ budget $B \in \mathbb{Z}_{\geq 0}$.

$$\min\left\{\ell_1(\delta(\mathcal{C})) \middle| \begin{array}{c} \operatorname{cut} \mathcal{C} \text{ with} \\ \frac{\ell_2(\delta(\mathcal{C})) \leq 1}{2} \\ \end{array} \right\}$$

В

A closer look at budgeted cuts

Given

Task (budgeted cut problem)

- Graph G = (V, E),
- edge lengths $\ell_1, \ell_2 : E \to \mathbb{Z}_{\geq 0}$,
- ▶ budget B ∈ Z_{≥0}.

$$\min\left\{\ell_1(\delta(\mathcal{C})) \middle| \begin{array}{c} \operatorname{cut} \mathcal{C} \\ \ell_2(\delta(\mathcal{C})) \end{array} \right|$$

cut *C* with
$$\ell_2(\delta(C)) \leq B$$

A biobjective viewpoint on budgeted cuts

How to solve the budgeted cut problem?

Suffices to find all 2-min cuts wrt ℓ^* to solve budgeted cut problem.

Back to single objective problem.

Can be solved efficiently!

Finding min cuts ... and beyond

Let's start with easier prob.: How to find a min cut in a unit-weighted graph?

How likely is it to get some min cut that way

▶ Algo returns $C \Leftrightarrow$ no edge of $\delta(C)$ ever gets contracted.

Probab.: 1st contr. edge
$$e_1$$
 is in $\delta(C)$
• min cut size = $k \Rightarrow$ min degree $\ge k$
 $\Rightarrow m \ge k \cdot n/2$.

►
$$\Pr[e_1 \in \delta(C)] = |\delta(C)|/m \le 2/n.$$

What about later edge contractions?

When contracting *i*-th edge e_i : only n + 1 - i (super-)vertices left:

 $\text{min deg.} \geq k \ \Rightarrow \ m \geq k \cdot (n+i-i)/2 \ \Rightarrow \ \Pr[e_i \in \delta(C)] \leq 2/(n+1-i).$

$$\begin{aligned} \Pr[\text{algo returns } \delta(\mathcal{C})] &= \prod_{i=1}^{n-2} (1 - \Pr[e_i \in \delta(\mathcal{C})]) \geq \prod_{i=1}^{n-2} \frac{n-1-i}{n+1-i} \\ &= 2/n(n-1) \geq 1/n^2. \end{aligned}$$

How to get 2-min cuts from that?

Summary of randomized procedure

A single run of algo returns any min cut *C* with probability $\geq 1/n^2$.

Implications

- There are at most n^2 min cuts.
- ▶ $n^2 \log n$ repetitions of algo finds all min cuts with prob. $\approx 1 1/n$.

Getting all 2-min cuts

- Algorithm generalizes to general edge weights.
 (Contract edge with prob. proportional to its weight.)
- ► Analysis extends to 2-min cuts: any 2-min cut is returned with prob. 1/n⁴.
- ▶ $n^4 \log n$ repetitions of algo finds all 2-min cuts with prob. $\approx 1 1/n^4$.

Summary of approach for conn. interd.

- Interdiction problems have many interesting applications.
- **Dualization**: min-max problem \rightarrow min-min problem.
- > Threshold guessing: transformation to biobjective problem.

Special case: Connectivity Interdiction with unit removal costs

Can be rephrased as budgeted cut problem, which is efficiently solvable.

Armon, A. and Zwick, U. (2006). Multicriteria global minimum cuts. Algorithmica, 46:15–26.

- Assimakopoulos, N. (1987). A network interdiction model for hospital infection control. Computers in Biology and Medicine, 17(6):413–422.
- Burch, C., Carr, R., Krumke, S., Marathe, M., Phillips, C., and Sundberg, E. (2003). A decomposition-based pseudoapproximation algorithm for network flow inhibition. In *Network Interdiction and Stochastic Integer Programming*, chapter 3, pages 51–68. Springer.
- Dinitz, M. and Gupta, A. (2013). Packing interdiction and partial covering problems. In Proceedings of 16th Conference on Integer Programming and Combinatorial Optimization (IPCO), pages 157–168.
- Frederickson, G. N. and Solis-Oba, R. (1996). Increasing the weight of minimum spanning trees. In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 539–546, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.
- Karger, D. R. (1993). Global min-cuts in RNC, and other ramifications of a simple min-out algorithm. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 21–30.
- Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., and Zhao, J. (2008). On short paths interdiction problems: Total and node-wise limited interdiction. *Theoretical Computer Science*, 43(2):204–233.
- Phillips, C. A. (1993). The network inhibition problem. In Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC), pages 776–785.
- Salmeron, J., Wood, K., and Baldick, R. (2004). Analysis of electric grid security under terrorist thread. *IEEE Transaction on Power Systems*, 19(2):905–912.

- Wood, R. K. (1993). Deterministic network interdiction. *Mathematical and Computer Modeling*, 17(2):1–18.
- Zenklusen, R. (2010). Matching interdiction. Discrete Applied Mathematics, 158(15):1676–1690.
- Zenklusen, R. (2014). Connectivity interdiction. Operations Research Letters, 42(6-7):450 454.
- Zenklusen, R. (2015). An O(1)-approximation for minimum spanning tree interdiction. In Proceedings of 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 709–728.