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(Constraint) Convex Optimization 

Convex	Optimization:	

Given	a	feasible	region	𝑃	solve	the	optimization	problem:	

Min↓𝑥∈𝑃  𝑓(𝑥),   	

where	𝑓	is	a	convex	function	(+	extra	properties).	

		

	

Our	setup.	

1.  Access	to	𝑃.	Linear	Optimization	(LO)	oracle:	Given	linear	objective	c	
𝑥←argmin↓𝑣∈𝑃 𝑐↑𝑇 𝑣 	

2.  Access	to	𝑓.	First-Order	(FO)	oracle:	Given	𝑥	return	
𝛻𝑓(𝑥) and 𝑓(𝑥)	

	

=>	Complexity	of	convex	optimization	relative	to	LO/FO	oracle	

Source:	[Jaggi	2013]	
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Why would you care for constraint convex optimization? 

Setup	captures	various	problems	in	Machine	Learning,	e.g.:	

1.  OCR	(Structured	SVM	Training)	

1.  Marginal	polytope	over	chain	graph	of	letters	of	word	and	quadratic	loss	

2.  Video	Co-Localization	
1.  Flow	polytope	and	quadratic	loss	

3.  Lasso	

1.  Scaled	ℓ↓1 -ball	and	quadratic	loss	(regression)	

4.  Regression	over	structured	objects	
1.  Regression	over	convex	hull	of	combinatorial	atoms	

5.  Approximation	of	distributions	

1.  Bayesian	inference,	sequential	kernel	herding,	…	
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Smooth Convex Optimization 101 
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Basic notions 

Let	𝑓:𝑅↑𝑛 →𝑅	be	a	function.		We	will	use	the	following	basic	concepts:	

Smoothness.	𝑓(𝑦)≤𝑓(𝑥)+∇𝑓(𝑥)↑𝑇 (𝑦−𝑥)+ 𝐿/2 ||𝑥−𝑦||↑2 	
Convexity.	𝑓(𝑦)≥𝑓(𝑥)+∇𝑓(𝑥)↑𝑇 (𝑦−𝑥)	
Strong	Convexity.	𝑓(𝑦)≥𝑓(𝑥)+∇𝑓(𝑥)↑𝑇 (𝑦−𝑥)+ 𝜇/2 ||𝑥−𝑦||↑2 	

=>	Use	unclear.	Next	step:	Operationalize	notions!	
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Measures of Progress: 
Smoothness and Idealized Gradient Descent 

Consider	an	iterative	algorithm	of	the	form:	

𝑥↓𝑡+1 ←𝑥↓𝑡 − 𝜂↓𝑡 𝑑↓𝑡 	
	

By	definition	of	smoothness.		𝑓(𝑥↓𝑡 )−𝑓(𝑥↓𝑡+1 )≥ 𝜂↓𝑡 ∇𝑓(𝑥↓𝑡 )↑𝑇 𝑑↓𝑡 − 𝜂↓𝑡↑2 
𝐿/2 ||𝑑↓𝑡 ||↑2 	
	
	

Smoothness	induces	primal	progress.	Optimizing	right-hand	side:	
	

𝑓(𝑥↓𝑡 )−𝑓(𝑥↓𝑡+1 )≥ (∇𝑓(𝑥↓𝑡 )↑𝑇 𝑑↓𝑡 )↑2 /2𝐿||𝑑↓𝑡 ||↑2                for               
𝜂↓𝑡 ↑∗ = (∇𝑓(𝑥↓𝑡 )↑𝑇 𝑑↓𝑡 )↑  /𝐿||𝑑↓𝑡 ||↑2  	
	

	

Idealized	Gradient	Descent	(IGD).	Choose	 𝑑↓𝑡 ←𝑥↓𝑡 − 𝑥↑∗ 	(non-det!)	
	

𝑓(𝑥↓𝑡 )−𝑓(𝑥↓𝑡+1 )≥ (∇𝑓(𝑥↓𝑡 )↑𝑇 ( 𝑥↓𝑡 − 𝑥↑∗ ))↑2 /2𝐿||𝑥↓𝑡 − 𝑥↑∗ ||↑2         
for        𝜂↓𝑡 ↑∗ = (∇𝑓(𝑥↓𝑡 )↑𝑇 ( 𝑥↓𝑡 − 𝑥↑∗ ))↑  /𝐿||𝑥↓𝑡 − 𝑥↑∗ || 	
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Measures of Optimality: 
Convexity 

Recall	convexity:	𝑓(𝑦)≥𝑓(𝑥)+∇𝑓(𝑥)↑𝑇 (𝑦−𝑥)	

Primal	bound	from	Convexity.	𝑥←𝑥↓𝑡 	and	𝑦←𝑥↑∗ ∈ argmin↓𝑥∈𝑃 𝑓(𝑥):																						

ℎ↓𝑡 ≔𝑓(𝑥↓𝑡 )−𝑓(𝑥↑∗ )≤∇𝑓(𝑥↓𝑡 )↑𝑇 ( 𝑥↓𝑡 − 𝑥↑∗ )	

	

Plugging	this	into	the	progress	from	IGD	and	||𝑥↓𝑡 − 𝑥↑∗ ||≤||𝑥↓0 − 𝑥↑∗ ||.

𝑓(𝑥↓𝑡 )−𝑓(𝑥↓𝑡+1 )≥ (∇𝑓(𝑥↓𝑡 )↑𝑇 (𝑥↓𝑡 − 𝑥↑∗ ))↑2 /2𝐿||𝑥↓𝑡 − 𝑥↑∗ ||↑2  ≥ 

ℎ↓𝑡↑2 /2𝐿||𝑥↓0 − 𝑥↑∗ ||↑2  	

	

Rearranging	provides	contraction	and	convergence	rate.	

ℎ↓𝑡+1 ≤ ℎ↓𝑡 ⋅(1− ℎ↓𝑡 /2𝐿||𝑥↓0 − 𝑥↑∗ ||↑2  )    ⇒        ℎ↓𝑇 ≤ 2𝐿||𝑥↓0 − 

𝑥↑∗ ||↑2 /𝑇+4 	
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Measures of Optimality: 
Strong Convexity 

Recall	strong	convexity:	𝑓(𝑦)≥𝑓(𝑥)+∇𝑓(𝑥)↑𝑇 (𝑦−𝑥)+ 𝜇/2 ||𝑥−𝑦||↑2 	

	

Primal	bound	from	Strong	Convexity.	𝑥←𝑥↓𝑡 	and	𝑦←𝑥↓𝑡 −𝛾( 𝑥↓𝑡 −𝑥↑∗ )

ℎ↓𝑡 ≔𝑓(𝑥↓𝑡 )−𝑓(𝑥↑∗ )≤ (∇𝑓(𝑥↓𝑡 )↑𝑇 (𝑥↓𝑡 − 𝑥↑∗ ))↑2 /2𝜇||𝑥↓𝑡 − 𝑥↑∗ ||↑2  	
	
Plugging	this	into	the	progress	from	IGD.

𝑓(𝑥↓𝑡 )−𝑓(𝑥↓𝑡+1 )≥ (∇𝑓(𝑥↓𝑡 )↑𝑇 (𝑥↓𝑡 − 𝑥↑∗ ))↑2 /2𝐿||𝑥↓𝑡 − 𝑥↑∗ ||↑2  ≥ 
𝜇/𝐿 ℎ↓𝑡 	

	

Rearranging	provides	contraction	and	convergence	rate.	

ℎ↓𝑡+1 ≤ ℎ↓𝑡 ⋅(1− 𝜇/𝐿 )    ⇒        ℎ↓𝑇 ≤ 𝑒↑− 𝜇/𝐿 𝑇 ⋅ ℎ↓0 	
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From IGD to actual algorithms 

Consider	an	algorithm	of	the	form:	

𝑥↓𝑡+1 ←𝑥↓𝑡 − 𝜂↓𝑡 𝑑↓𝑡 	
	

	
Scaling	condition	(Scaling).	Show	there	exist	𝛼↓𝑡 	with		

∇𝑓(𝑥↓𝑡 )↑𝑇 𝑑↓𝑡 /||𝑑↓𝑡 || ≥ 𝛼↓𝑡 ∇𝑓(𝑥↓𝑡 )↑𝑇 (𝑥↓𝑡 − 𝑥↑∗ )/||𝑥↓𝑡 − 𝑥↑∗ || 	

=>	Lose	an	 𝜶↓𝒕↑𝟐 	factor	in	iteration	𝒕.	Bounds	and	rates	follow.		.	Bounds	and	rates	follow.		

	

	
Example.	(Vanilla)	Gradient	Descent	with	𝑑↓𝑡 ←∇𝑓( 𝑥↓𝑡 )	

∇𝑓(𝑥↓𝑡 )↑𝑇 𝑑↓𝑡 /||𝑑↓𝑡 || = ||∇𝑓(𝑥↓𝑡 )||↑2 ≥1⋅ ∇𝑓(𝑥↓𝑡 )↑𝑇 (𝑥↓𝑡 − 𝑥↑∗ )/||
𝑥↓𝑡 − 𝑥↑∗ || 	

=>	TODAY:	No	convergences	proofs.	Just	establishing	(Scaling).	
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Conditional Gradients  
(a.k.a. Frank-Wolfe Algorithm) 
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Conditional Gradients a.k.a. Frank-Wolfe Algorithm 

1.  Advantages	
1.  Extremely	simple	and	robust:	no	complicated	data	structures	to	maintain	
2.  Easy	to	implement:	requires	only	a	linear	optimization	oracle	(first	order	method)	
3.  Projection-free:	feasibility	via	linear	optimization	oracle	
4.  Sparse	distributions	over	vertices:	optimal	solution	is	convex	comb.	(enables	sampling)	

2.  Disadvantages	

1.  Suboptimal	convergence	rate	of	𝑂( 1/𝑇 )	in	the	worst-case	

=>	Despite	suboptimal	rate	often	used	because	of	simplicity	

	

Source:	[Jaggi	2013]	
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Conditional Gradients a.k.a. Frank-Wolfe Algorithm 

𝑣↓1 	

𝑥↓1 =𝑣↓1 	

∇𝑓(𝑥↓𝑡 )	

−∇𝑓(𝑥↓1 )	

𝑣↓2 	

𝑥↓2 	

−∇𝑓(𝑥↓2 )	

𝑣↓3 	

𝑥↓3 	

Note:	
	

A)	Points	are	formed	as	convex	
combinations	of	vertices	

B)	vertices	used	to	write	point		
=>	„Active	sets“	

	



14	

Conditional Gradients a.k.a. Frank-Wolfe Algorithm 

Establishing	(Scaling).		

FW	algorithm	takes	direction	𝑑↓𝑡 =𝑥↓𝑡 − 𝑣↓𝑡 .	Observe	
	

∇𝑓(𝑥)↑𝑇 (𝑥↓𝑡 − 𝑣↓𝑡 )≥∇𝑓(𝑥)↑𝑇 (𝑥↓𝑡 − 𝑥↑∗ )	
Hence	with	𝛼↓𝑡 = ||𝑥↓𝑡 − 𝑥↑∗ ||/𝐷  	with	D	diameter	of	P:	
	

∇𝑓(𝑥)↑𝑇 (𝑥↓𝑡 − 𝑣↓𝑡 )/||𝑥↓𝑡 − 𝑣↓𝑡 || ≥ ||𝑥↓𝑡 − 𝑥↑∗ ||/𝐷 ⋅ ∇𝑓(𝑥)↑𝑇 (𝑥↓𝑡 − 
𝑥↑∗ )/||𝑥↓𝑡 − 𝑥↑∗ || 	
	
=>	This	 𝜶↓𝒕 	is	sufficient	for	𝑶( 𝟏/𝒕 )	convergence	but	better??	

	

Source:	[Jaggi	2013]	
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The strongly convex case 
Linear convergence in special cases 

If	𝑓	is	strongly	convex	we	would	expect	a	linear	rate	of	convergence.		
	

Obstacle.	

∇𝑓(𝑥)↑𝑇 (𝑥↓𝑡 − 𝑣↓𝑡 )/||𝑥↓𝑡 − 𝑣↓𝑡 || ≥ ||𝒙↓𝒕 − 𝒙↑∗ ||/𝐷 ⋅ ∇𝑓(𝑥)↑𝑇 (𝑥↓𝑡 − 
𝑥↑∗ )/||𝑥↓𝑡 − 𝑥↑∗ || 	
	

	
Special	case	𝑥↑∗ ∈rel.int(𝑃), say	𝐵(𝑥↑∗ ,2𝑟)⊆𝑃.	Then:	

	

Theorem	[Marcotte,	Guélat	‘86].	After	a	few	iterations	
	

∇𝑓(𝑥)↑𝑇 (𝑥↓𝑡 − 𝑣↓𝑡 )/||𝑥↓𝑡 − 𝑣↓𝑡 || ≥ 𝑟/𝐷 ⋅ ∇𝑓(𝑥)↑𝑇 (𝑥↓𝑡 − 𝑥↑∗ )/||𝑥↓𝑡 − 
𝑥↑∗ || 	
and	linear	convergence	follows	via	(Scaling).	
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The strongly convex case 
Is linear convergence in general possible? 

(Vanilla)	Frank-Wolfe	cannot	achieve	linear	convergence	in	general:	

	

Theorem	[Wolfe	‘70].	 𝑥↑∗ 	on	boundary	of	P.	For	any	𝛿>0	for	infinitely	many	t:	

𝑓(𝑥↓𝑡 )−𝑓(𝑥↑∗ )≥ 1/𝑡↑1+𝛿  	
	
Issue:	zig-zagging	(b/c	first	order	opt)																																																											 [Wolfe	‘70]	proposed	Away	Steps	
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The strongly convex case 
Linear convergence in general 

First	linear	convergence	result	(in	general)	 	[Garber,	Hazan	‘13]	

1.  Simulating	(theoretically	efficiently)	a	stronger	oracle	rather	using	Away	Steps	

2.  Involved	constants	are	extremely	large	=>	algorithm	unimplementable	

Linear	convergence	for	implementable	variants	 	[Lacoste-Julien,	Jaggi	‘15]	

1.  (Dominating)	Away-steps	are	enough		

2.  Includes	most	known	variants:	Away-Step	FW,	Pairwise	CG,	Fully-Corrective	FW,	Wolfe’s	
algorithm,	…		

3.  Key	ingredient:	There	exists	𝑤(𝑃)	(depending	on	polytope	𝑃	(only!))	s.t.	
	

∇𝑓(𝑥)↑𝑇 (𝑎↓𝑡  − 𝑣↓𝑡 )≥𝑤(𝑃)∇𝑓(𝑥)↑𝑇 (𝑥↓𝑡  − 𝑥↑∗ )/||𝑥↓𝑡  − 𝑥↑∗ || 	
	
( 𝑑↓𝑡 = 𝑎↓𝑡  − 𝑣↓𝑡 	is	basically	the	direction	that	either	variant	dominates)	

=>	Linear	convergence	via	(Scaling)	
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Many more variants and results… 

Recently	there	has	been	a	lot	of	work	on	Conditional	Gradients,	e.g.,	

	
	

1.  Linear	convergence	for	conditional	gradient	sliding	[Lan,	Zhou	‘14]	

2.  Linear	convergence	for	(some)	non-strongly	convex	functions	[Beck,	Shtern	‘17]	

3.  Online	FW	[Hazan,	Kale	‘12,	Chen	et	al	‘18]	

4.  Stochastic	FW	[Reddi	et	al	‘16]	and	Variance-Reduced	Stochastic	FW	[Hazan,	Luo	’16,	
Chen	et	al	‘18]	

5.  In-face	directions	[Freund,	Grigas	‘15]	

	
	
…	and	many	more!!		
	

=>	Very	competitive	and	versatile	in	real-world	applications	
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Revisiting Conditional Gradients 
Lazification 
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Bottleneck 1: Cost of Linear Optimization 
Drawbacks in the context of hard feasible regions 

Basic	assumption	of	conditional	gradient	methods:	

Linear	Optimization	is	cheap	

As	such	accounted	for	as	𝑂(1).	This	assumption	is	not	warranted	if:	

	

1.  Linear	Program	of	feasible	region	is	huge	
1.  Large	shortest	path	problems	

2.  Large	scheduling	problems	

3.  Large-scale	learning	problems	
	

2.  Optimization	over	feasible	region	is	NP-hard	
1.  TSP	tours	

2.  Packing	problems	

3.  Virtually	every	real-world	combinatorial	optimization	problem	
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Rethinking CG in the context of expensive oracle calls 

Basic	assumption	for	us:	

Linear	Optimization	is	not	cheap	

(Think:	hard	IP	can	easily	require	an	hour	to	be	solved	=>	one	call/it	unrealistic)	

	

1.  Questions:	
1.  Is	it	necessary	to	call	the	oracle	in	each	iteration?	

2.  Is	it	necessary	to	compute	(approximately)	optimal	solutions?	

3.  Can	we	reuse	information?	

2.  Theoretical	requirements	
1.  Achieve	identical	convergence	rates,	otherwise	any	speedup	will	be	washed	out	

3.  Practical	requirements	
1.  Make	as	few	oracle	calls	as	possible		
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Lazification approach using weaker oracle 

1.  Interpretation	of	Weak	Separation	Oracle:	Discrete	Gradient	Directions	

1.  Either	a	new	point	𝑦∈𝑃	that	improves	the	current	objective	by	at	least	Φ/𝐾 		(positive	call)	
2.  Or	it	asserts	that	all	other	points	𝑧∈𝑃	improve	no	more	than	Φ	(negative	call)	

	

2.  Lazification	approach	 	[Braun,	P.,	Zink	‘17]	
1.  Use	weaker	oracle	that	allows	for	caching	and	early	termination	(no	more	expensive	than	LP)	

2.  Advantage:	huge	speedups	in	wall-clock	time	when	LP	is	hard	to	solve	

1.  For	hard	LPs	speedups	can	be	as	large	as	10↑7 	
3.  Disadvantage:	weak	separation	oracle	produces	even	weaker	approx.	than	LP	oracle	

1.  Actual	progress	in	iterations	can	be	worse	than	with	LP	oracle	

2.  Advantage	vanishes	if	LP	is	very	cheap	and	can	be	worse	than	original	algorithm	

3.  Caching	is	not	“smart”:	it	simple	iterates	over	the	already	seen	vertices	
	

3.  Optimal	complexity	for	Weak	Separation	Oracle	 	[Braun,	Lan,	
P.,	Zhou	‘17]	
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Revisiting Conditional Gradients 
Blending 
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Bottleneck 2: Quality of gradient approximation 
Frank-Wolfe vs. Projected Gradient Descent 

𝑥↓𝑡 	

−∇𝑓(𝑥↓𝑡 )	

𝑣↓1 	

𝑣↓2 	
Gradient	Descent-style	progress	

	
Problem:	how	far	

can	we	go	into	this	direction	without	
leaving	the	feasible	region?	

	
Solution:	do	a	gradient	step	and	project	
back	into	feasible	region.	However	can	be	

very	expensive	

𝑥↓𝑡+1 	

Frank-Wolfe	approach	
	

Use	directions	formed	via	vertices	as	
approximations	of	the	gradient	and	form	

convex	combinations	only.	
	

Problem:	Approximations	can	be	bad,	i.e.,		
⟨𝛁𝐟(𝐱↓𝐭 ), 𝐯 − 𝐱↓𝐭 ⟩	small	

	

𝑣↓2 − 𝑥↓𝑡 	

𝑣↓1 − 𝑥↓𝑡 	

𝑥↓𝑡+1 =(1−𝜆)𝑥↓𝑡 +𝜆𝑣↓1 	

⇒ 	Tradeoff	between	ensured	feasibility	and		
quality	of	gradient	approximations!	
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𝑥↑∗ 	

𝑣↓4 	

𝑥↓𝑡 	

𝑣↓2 	

𝑣↓1 	 𝑣↓3 	

Gradient	Descent	Phase	
	

As	long	as	enough	progress,	perform	
gradient	descent	over	the	simplex	( 𝒗↓𝟏 , 

𝒗↓𝟐 , 𝒗↓𝟑 )	
	

𝑥↓𝑡+𝑙 	

Frank-Wolfe	Phase	
	

Once	progress	over	simplex	too	small,	call	
LP	oracle	to	obtain	new	vertex	and	

simplex	
	

−∇𝑓(𝑥↓𝑡+𝑙 )	 𝑥↓𝑡+𝑙+1 	

Blending of gradient steps and Frank-Wolfe steps 
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Main Theorem 

You	basically	get	what	you	expect.	

	

	

Theorem.	[Braun,	P.,	Tu,	Wright	‘18]	Assume	𝑓	is	convex	and	smooth	over	the	polytope	𝑃	

with	curvature	𝐶	and	geometric	strong	convexity	𝜇.	Then	Algorithm	1	ensures:	

𝑓(𝑥↓𝑡 )−𝑓(𝑥↑∗ )≤𝜀                     for 𝑡≥Ω(𝐶/𝜇 log� Φ↓0 /𝜀  ),	

where	𝑥↑∗ 	is	an	optimal	solution	to	𝑓	over	𝑃	and	 Φ↓0 ≥𝑓(𝑥↓0 )−𝑓( 𝑥↑∗ ).	

	

	

(For	previous	empirical	work	with	similar	idea	see	also	[Rao,	Shah,	Wright	‘15])	
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Computational Results 

La
ss
o	

St
ru
ct
ur
ed

	R
eg
re
ss
io
n	

Sp
ar
se
	S
ig
na

l	R
ec
ov
er
y	

M
at
rix

	C
om

pl
et
io
n	



28	

Revisiting Conditional Gradients 
Acceleration 
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How about acceleration? 

The	problem.	Rates	from	standard	proofs	do	not	match	known	lower	bounds:	
	

1.  Smooth	convex	case:	𝑂( 1/𝜀 )	vs.	Ω( 1/√�𝜀  )	
2.  Smooth	strongly	convex	case:	𝑂( 𝜇/𝐿 log 1/𝜀 )	vs.	Ω(√� 𝜇/𝐿  log 1/𝜀 )	
	

	

Acceleration	closes	this	gap.	Various	approaches:	

1.  Polyak’s	Heavy	Ball	method	

2.  Nemirovski	Acceleration	with	Line	Search	

3.  Nesterov	Acceleration	

4.  ….	
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Limits to Acceleration for LP-based Methods 

Lower	bound.	Consider	the	optimization	problem:		
[Jaeggi	2013,	Lan	2013]	

min┬𝑥∈Δ(𝑛) � ||𝑥||↓2↑2  	
where	Δ(𝑛)= 𝑥∈ 𝑅↓+↑𝑛 �∑ 𝑥↓𝑖 =1 	probability	simplex.	

	

	

Now,	after	𝑘	iterations	the	primal	gap	ℎ↓𝑘 	is	lower	bounded	as	follows:	
	

𝒉↓𝒌 ≥ 𝟏/𝒌 − 𝟏/𝒏 	
	

1.  Smooth	convex:	After	𝑛/2 	iterations	𝒉↓𝒏/𝟐 ≥ 𝟏/𝒏 		
=>	Vanilla	FW	rate	is	optimal	(up	to	constant	factors)	

2.  Smooth	strongly	convex:	If	ℎ↓𝑡 ≤ ℎ↓0 (1−𝑟)↑𝑡 ,	then	𝒓≤𝟐 log 𝒏/𝒏 		
=>	Away-Step	FW	rate	of	(1− 1/8𝑛 )	is	optimal	(up	to	log	factors)		
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Acceleration Beyond the Dimension Threshold? 

	

Basic	idea:	The	lower	bound	limits	acceleration	only	up	to	the	dimension.	However,	if	we	
seek	an	accelerated	global	rate	of	the	form:	
	

ℎ↓𝑡 ≤ ℎ↓0 (1−𝑟)↑𝑡 ,	then	𝑟≤2 log 𝑛/𝑛 	,	
	
i.e.,	the	lower	bound	also	limits	rates	beyond	the	dimension	threshold.		

	

	

In	a	nutshell:	We	can	design	an	algorithm	that	runs	a	constant	number	 𝑻↓𝟎 	of	
unaccelerated	steps	and	then	has	“true”	acceleration	kick	in.		
	

=>	Asymptotically	optimal	rate.	Roughly:	 	[Carderera,	Diakonikolas,	P.	‘19]	
	

𝒉↓𝒕 ≤ 𝒉↓𝟎 (𝟏−√� 𝝁/𝑳  )↑𝒕− 𝑻↓𝟎  	
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Preliminary Computational Results 

	

Setup:	Quadratic	over	Birkhoff	Polytope		
=>	small	dim-dependent	term	
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Preliminary Computational Results 

	

Setup:	Quadratic	over	Probability	Simplex	(dim	=	1000)	
=>	large	dim-dependent	term	/	lower	bound	instance	

	

log-log	scale	
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Preliminary Computational Results 

	

Setup:	Video	Co-Localization	
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Want to know more? 
Upcoming survey online in the next few weeks: 

 
[Carderera, Combettes, P. “Conditional Gradients” ’19+] 
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Announcement: Combinatorial Optimization at Work 
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A summer school of TU Berlin in cooperation with MATH+  and the Berlin Mathematical School 
 

Everything you always wanted to know about LP/MIP  
and real-world industrial applications 

(lectures and exercises) 
 
 

•  Dates of the course:  September 14 – 26, 2020 

•  Language:  English 

•  Location:  Zuse Institute Berlin 

•  Application deadline:  June 14, 2020 

•  Participation fee:  none 

•  URL (info/application):  http://co-at-work.zib.de 

•  Intended audience:      master/PhD students, Post-docs 

•  Contact:  coaw@zib.de 

•  Lectures by:  the SCIP team, developers of Xpress,  

 Gurobi, Gams, and many more     
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