

Resilient and Efficient Layout of Water Distribution Networks

Marc Pfetsch TU Darmstadt

Joint work with Andreas Schmitt and Lena Altherr, Philipp Leise

within the Collaborative Research Center 805

Overview

Topics of this talk:

- water distribution networks for tall buildings
- global solution of mixed-integer nonlinear programs
- energy efficient control of pumps
- topology/layout optimization
- robust optimization (resilience, interdiction)
- ▷ ~→ min max min structure

Goals of this talk:

- show how particular structure can help
- demonstrate methods for resilience

Literature – Selection

Water network optimization:

- D'Ambrosio et al (2015) [overview]
- Mala-Jetmarova, Sultanova, and Savic (2017) [models]
- Kolb and Lang (2012) [PDE]
- Geißler et al. (2012) [control with integer variables]

Topology optimization:

- De Corte A, Sörensen K (2013) [overview]
- Bragalli et al. (2012) [diameter optimization]

Robustness:

- Robinius et al. (2018) [tree shaped robust networks]
- Meng et al. (2018) [resilience]

Outline

- 1 Water Distribution Networks Model
- 2 Branch and Bound Solving Scheme
- 3 Resilience
- 4 Concluding Remarks

High-Rise Water Supply Systems

For water supply in high buildings:

- ▷ Need pumps to overcome gravity.
- Corresponding energy costs are significant.

www.pixabay.com

. . .

State of the art:

- Place pumps in basement and connect floors by one pipe strand.
- Energy inefficient: would need less pressure for lower levels.

High-Rise Water Supply Systems

High-Rise Water Supply Systems

Decentralized approach:

Optimize costs of

- interconnection of pressure zones,
- placement of pumps, and
- operating speed of pumps

to supply building with water.

Mixed-Integer Nonlinear Program (MINLP)

- Steady state setting
- Continuous variables for physical quantities:
 - pressure head h,
 - volume flow q,
 - power p, and
 - normalized rotating speed ω .
- Binary variables for the following decisions:
 - Which pipe should be selected?
 - Where to place a pump of a given pump type?
- Constraints (non-convex):
 - nonlinear pump characteristics,
 - hydraulic resistance laws,
 - flow conditions in the pipe network, and
 - binary decisions for components (on/off).
- Objective:
 - Minimize combination of operating and investment costs.

Pipe Connections

- ▷ Base graph G = (V, A)
 - V = {0,..., N} A = { $(u, v) \in V \times V : u < v$ }
- ▷ $x_a = 1$ if connection *a* is used
- Feasible connections
 - form a spanning tree rooted in 0

$$\sum_{a\in\delta^{-}(v)}x_{a}=1, \quad v\in V$$

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 10

Pump Placement

- $\,\triangleright\,$ Set of different pump types ${\cal C}$
- On each connection different types in series
- ▷ Up to M of each type in parallel
- ▷ $y_{a,i}^m = 1$ if pump type *i* is built *m* times on *a* ▷ $\sum_{a,i}^{M} y_{a,i}^m \le x_a, \quad a \in A, i \in C$

M = 3

Flow and Pressure

- ▷ Volume flow demand of *D* at each pressure zone
- $\triangleright q_a =$ flow along connection a
- $h_v = \text{pressure difference of zone } v \text{ to inlet}$
- ▷ $\Delta h_{a,i}$ = pressure increase of type *i* pumps on *a*
- Flow balance
- ▷ Input and minimal pressure
 - $h_0 = 0, h_v \geq H_v^{\min}, v \in V \setminus \{0\}$
- ▷ Friction on pipe *R* (Darcy-Weisbach) $R_a(q) = \lambda \frac{1}{d_a^5} \frac{8}{\pi^2} \frac{q^2}{g} L_a$
- ▷ Pressure distribution for $a = (u, v) \in A$:

$$x_a = 1 \Rightarrow h_v \leq h_u + \sum_{i \in C} \Delta h_{a,i} - L_a - R_a(q_a)$$

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 11

Flow and Pressure

- Volume flow demand of D at each pressure zone
- $\triangleright q_a$ = flow along connection *a*
- $h_v = \text{pressure difference of zone } v \text{ to inlet}$
- ▷ $\Delta h_{a,i}$ = pressure increase of type *i* pumps on *a*
- Flow balance
- Input and minimal pressure
 - $h_0 = 0, h_v \ge H_v^{\min}, v \in V \setminus \{0\}$ Friction on pipe *B* (Darcy-Weish
- ▷ Friction on pipe *R* (Darcy-Weisbach) $R_a(q) = \lambda \frac{1}{d_a^5} \frac{8}{\pi^2} \frac{q^2}{g} L_a$
- ▷ Pressure distribution for $a = (u, v) \in A$:

$$x_a = 1 \Rightarrow h_v \leq h_u + \sum_{i \in C} \Delta h_{a,i} - L_a - R_a(q_a)$$

Pump Characteristic Diagrams TECHNISCHE 10 120 Pressure increase Δh in m Power intake p in kW 8 100 4 80 6 60 40 2 ____P(q, <u>₩</u>____ 20

0

20 25

Volume flow q in m³/h

30 35

 $\triangleright \omega_{a,i}$ relative operating speed of type *i* pumps on *a*

Volume flow a in m³/h

25 30 35

- $\triangleright \omega$, q, Δh and p related by characteristic diagrams
- polynomial approximations of power intake and pressure increase:
 - $\Delta H_i(q,\omega) = \alpha_i^H q^2 + \beta_i^H q \omega + \gamma_i^H \omega^2$

0 5

 $\blacktriangleright P_i(q,\omega) = \alpha_i^P q^3 + \beta_i^P q^2 \omega + \gamma_i^P q \omega + \delta_i^P \omega^3$

Mixed-Integer Nonlinear Program

$$\min \sum_{a \in A} C_a^{\omega} x_a + \sum_{a \in A} \sum_{i \in C} \sum_{m=1}^M C_i^{\omega} m y_{a,i}^m + C^{\omega} \sum_{a \in A} \sum_{i \in C} p_{a,i}$$
s.t.
$$\sum_{a \in \delta^-(v)} q_a - \sum_{a \in \delta^+(v)} q_a = D, \quad v \in V, \quad 0 \le q_a \le NDx_a, \quad a \in A,$$

$$\Delta h_{a,i} = \sum_{m=1}^M \Delta H_i \left(\frac{q_a}{m}, \omega_{a,i}\right) y_{a,i}^m, \quad a \in A, i \in C, \quad \sum_{m=1}^M y_{a,i}^m \le 1, \quad a \in A, i \in C,$$

$$p_{a,i} = \sum_{m=1}^M mP_i \left(\frac{q_a}{m}, \omega_{a,i}\right) y_{a,i}^m, \quad a \in A, i \in C, \quad \sum_{a \in \delta^-(v)} x_a = 1, \quad v \in V,$$

$$\left(\overline{\alpha}_i \frac{q_a}{m} + \overline{\beta}_i \Delta h_{a,i} - \overline{\gamma}_i\right) y_{a,i}^m \le 0, \quad a \in A, i \in C, \quad m \in [M], \quad h_v \ge \underline{H}, \quad v \in V \setminus \{0\},$$

$$\left(h_v - h_u - \sum_{i \in C} \Delta h_{a,i} + L_a + R_a(q_a)\right) x_a = 0, \quad a = (u, v) \in A, \quad h_0 = H_0,$$

$$x \in \{0, 1\}^A, y \in \{0, 1\}^{A \times C \times [M]}, \quad q \in \mathbb{R}^A_+, \omega \in [\omega, 1]^{A \times C}, \quad \Delta h \in \mathbb{R}^{A \times C}_+, p \in \mathbb{R}^{A \times C}_+, h \in \mathbb{R}^V_+.$$

Example of Optimal Solution

- Hotel, 100 m tall, 7 pressure zones
- Total flow demand 28 m³/h
- Operating time 21000 h
- > 3 pump types, placeable up to 5 times in parallel

Outline

Branch and Bound Algorithm


```
init U = \infty and \mathcal{T} = \{T\} with V_T = \{0, 1\} and A_T = \{(0, 1)\}

while \mathcal{T} \neq \emptyset do

choose and remove a partial tree T from \mathcal{T}

solve relaxation for T and denote its optimal value O

if O < U (else fathom node)

if T spans G

solve exact problem for T and denote its optimal value O^*

update U = \min\{U, O^*\}

else

form new partial trees from T and add to \mathcal{T} (branching)

return U;
```

- Exploit tree property: Pipe topology determines volume flow.
- ▷ Enumerate partial trees of *G* using a Branch and Bound scheme.
- ▷ Subproblems: optimal placement and operation of pumps for given tree.

Optimal Pump Placement and Operation Hidden convexity for fixed flow

Pump Description

 $\{(y, \rho, \Delta h) \in \{0, 1\} \times \mathbb{R}^2_+ : \rho \geq \tilde{P}_q(\Delta h) \, y, \; \Delta H(q, \underline{\omega}) \, y \leq \Delta h \leq \Delta H(q, 1) \, y\}$

- ▷ Consider fixed flow *q*.
- $\tilde{P}_q(\Delta h) \text{ formed by elimination of } \omega \text{ from } \Delta H(q, \omega) \text{ and plugging into } P(q, \omega).$
- ▷ Observation: $\tilde{P}_q(\Delta h)$ is convex for the given bounds
- Verified for particular pumps by solving a MINLP
- $ho \Rightarrow$ perspective cuts ([Frangioni, Gentile 2006])

Optimal Pump Placement and Operation Hidden convexity for fixed flow

Pump Description

 $\{(y, \rho, \Delta h) \in \{0, 1\} \times \mathbb{R}^2_+ : \rho \geq \tilde{P}_q(\Delta h) \, y, \; \Delta H(q, \underline{\omega}) \, y \leq \Delta h \leq \Delta H(q, 1) \, y\}$

- ▷ Consider fixed flow *q*.
- $\tilde{P}_q(\Delta h) \text{ formed by elimination of } \omega \text{ from } \Delta H(q, \omega) \text{ and plugging into } P(q, \omega).$
- ▷ Observation: P
 _q(Δh) is convex for the given bounds
- Verified for particular pumps by solving a MINLP
- $ho \Rightarrow$ perspective cuts ([Frangioni, Gentile 2006])
- $\triangleright \ p \geq \tilde{P}'_q(\Delta h^*)\Delta h + \left(\tilde{P}_q(\Delta h^*) \tilde{P}'_q(\Delta h^*)\Delta h\right) y.$

Optimal Pump Placement and Operation Hidden convexity for fixed flow

Pump Description

 $\{(y, \rho, \Delta h) \in \{0, 1\} \times \mathbb{R}^2_+ : \rho \geq \tilde{P}_q(\Delta h) \, y, \; \Delta H(q, \underline{\omega}) \, y \leq \Delta h \leq \Delta H(q, 1) \, y\}$

- ▷ Consider fixed flow *q*.
- $\tilde{P}_q(\Delta h) \text{ formed by elimination of } \omega \text{ from } \Delta H(q, \omega) \text{ and plugging into } P(q, \omega).$
- ▷ Observation: $\tilde{P}_q(\Delta h)$ is convex for the given bounds
- Verified for particular pumps by solving a MINLP
- $ho \Rightarrow$ perspective cuts ([Frangioni, Gentile 2006])
- $\triangleright \ p \geq \tilde{P}'_q(\Delta h^*) \Delta h + \left(\tilde{P}_q(\Delta h^*) \tilde{P}'_q(\Delta h^*) \Delta h\right) y.$

Relaxation

For partial tree *T*:

- ▷ Fixed path \mathcal{P}_v^T from 0 to each $v \in V_T$
- \triangleright supply only zones in V_T

Relaxation

For partial tree T:

- ▷ Fixed path \mathcal{P}_v^T from 0 to each $v \in V_T$
- \triangleright supply only zones in V_T
- \triangleright bound flow on connections in A_T

Relaxation

For partial tree T:

- ▷ Fixed path \mathcal{P}_v^T from 0 to each $v \in V_T$
- ▷ supply only zones in V_T
- \triangleright bound flow on connections in A_T
- relax characteristic diagram using best-case values

 $\begin{array}{lll} \overline{\Delta H}_i(\underline{Q},\overline{Q}) = \max & \Delta h \\ & \text{s. t.} & (\Delta h,q,\omega) \text{ is feasible for pump } i, \\ & q \in [\underline{Q},\overline{Q}] \\ \underline{P}_i(\underline{Q},\overline{Q}) = \min & P_i(q,\omega) \\ & \text{s. t.} & (\Delta h,q,\omega) \text{ is feasible for pump } i, \\ & q \in [\underline{Q},\overline{Q}] \end{array}$

Relaxation Model

Relaxation model for partial tree T

$$\begin{array}{ll} \min & \sum_{a \in A_T} C_a^{\mathsf{pi}} x_a + \sum_{a \in A_T} \sum_{i \in \mathcal{C}} \sum_{m=1}^M m \left(C_i^{\mathsf{pu}} + C^{\mathsf{en}} \ \underline{P}_i \left(\frac{\underline{Q}_a}{m}, \frac{\overline{Q}_a}{m} \right) \right) y_{a,i}^m \\ \text{s.t.} & \sum_{a \in \mathcal{P}_v^T} \sum_{i \in \mathcal{C}} \sum_{m=1}^M \overline{\Delta H}_i \left(\frac{\underline{Q}_a}{m}, \frac{\overline{Q}_a}{m} \right) y_{a,i}^m \geq H^{\mathsf{min}}, \qquad v \in V_T \setminus \{0\}, \\ & \sum_{m=1}^M y_{a,i}^m \leq 1, \qquad a \in A_T, i \in \mathcal{C}, \\ & y \in \{0, 1\}^{A_T \times \mathcal{C} \times [M]}. \end{array}$$

Computational Results

Comparison of MINLP and adapted branch and bound scheme:

# zones	MINLP			B-and-B			
	gap	time	solved	time	time relax	solved	
4	0.00	111.27	36	2.20	0.29	36	
5	3.90	1383.68	31	11.24	1.81	36	
6	50.51	5929.19	10	58.02	11.45	36	
7	142.31	7200.00	0	412.62	92.23	36	
8	239.19	7200.00	0	3315.81	786.77	36	

- SCIP 6.0.2, CPLEX 12.8.0, 2h time limit
- Gap: arithmetic mean of MINLP gap
- ▷ Time: shifted geometric mean of solving time in s with shift 5 s
- Solved: # solved instances
- > 36 instances/cluster
- Initialize with optimal solution to compare strength of dual bounds.
- Use perspective cuts in validation MINLP.

Outline

	Water Distribution Netw
	Branch and Bound Sol
3	Resilience

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 21

Resilience in Engineering

Resilience of Technical Systems

A resilient technical system enables an operation even under disturbances or failure of system components to a pre-defined minimal functioning level.

Latin "resilire" - "rebound", "return"

Resilience in Engineering

Resilience of Technical Systems

A resilient technical system enables an operation even under disturbances or failure of system components to a pre-defined minimal functioning level.

Latin "resilire" - "rebound", "return"

Paradigm Shift

What if? \Rightarrow Whatever happens!

Resilience vs. Robust Optimization

Buffering Capacity

A design with connections x and pumps y has a buffering capacity of K if any failure of up to K pumps can be tolerated on reduced functioning level.

That is: system is robust against failure of up to *K* pumps (interdiction).

- \triangleright Goal: find cost optimal design with buffering capacity *K*.
- ▷ Flow can still flow through pumps if they fail.
- ▷ For recourse strategy ignore energy consumption in case of failure.
- ▷ Model resilience for given fixed tree, since it is complex to model resilience with respect to connections x and pumps y using MINLP-techniques.

Buffering Capacity For Fixed Tree

Set of pump failure scenarios:

$$\mathcal{Z} = \left\{ z \in \{0, \dots, M\}^{A \times C} : \sum_{a \in A} \sum_{i \in C} z_{a,i} \le K \right\}$$

Theorem

A tree $T \in T$ and pump purchase decision $y \in \{0, 1\}^{A \times C \times [M]}$ has buffering capacity of K if and only if

$$\sum_{a \in \mathcal{P}_{v}^{T}} \sum_{i \in \mathcal{C}} \sum_{m=1+z_{a,i}}^{M} \overline{\Delta H}_{i} \left(\frac{Q_{a}}{(m-z_{a,i})}, \frac{Q_{a}}{(m-z_{a,i})} \right) y_{a,i}^{m} \geq H_{v}^{\min}$$
(*)

holds for each pressure zone $v \in V \setminus \{0\}$ and failure scenario $z \in \mathcal{Z}$.

Inclusion into Branch and Bound Algorithm

- ▷ Dynamically separate (\star) since Z grows exponentially in K.
- ▷ Find a worst-case failure scenario $z \in Z$ for given x and y.
- Solve for fixed pressure zone v

min
$$\sum_{a \in \mathcal{P}_{v}^{T}} \sum_{i \in \mathcal{C}} \sum_{m=1+z_{a,i}}^{M} \overline{\Delta H}_{i} \left(\frac{Q_{a}}{(m-z_{a,i})}, \frac{Q_{a}}{(m-z_{a,i})} \right) y_{a,i}^{m}$$

s.t. $z \in \mathcal{Z} = \left\{ z \in \{0, \dots, M\}^{A \times \mathcal{C}} : \sum_{a \in A} \sum_{i \in \mathcal{C}} z_{a,i} \leq K \right\}.$

Structure similar to knapsack

Theorem

Theorem: Solvable by dynamic programming in $\mathcal{O}(N|\mathcal{C}|MK^2)$ steps.

Modified Branch and Bound Algorithm


```
init U = \infty, Z' = \emptyset and T = \{T\} with V_T = \{0, 1\} and A_T = \{(0, 1)\};

while T \neq \emptyset do

choose and remove a partial tree T from T

solve relaxation for T with Constraint (*) for z \in Z' and denote its optimal value O

if O < U (else fathom node)

if T spans G

| solve exact problem for T by separating (*) and denote its optimal value O^*

add separated scenarios to Z'

update U = \min\{U, O^*\}

else

| form new trees from T and add to T (branching)

return U;
```

Optimal Solutions Using specialized solution algorithm

Cost Comparison

Higher resilience leads to greater overall costs, mainly due to investment costs.

What is the maximal volume flow that can be transported after failures?

- Resilient solutions are oversized for standard operation.
- ▷ K = 2 solution has greatest reserves, thus resilience \neq redundancy.

Comparison of System Power

Robustness to demand shift

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 30

Robustness to demand shift

Increased resilience leads to increased performance range and radius of performance.

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 31

Test Setting

Fixed parameters

- 5 pump types, at most 3 parallel
- fixed minimum pressure in each zone
- fixed energy costs

Variable parameters

- building height [m]: {100, 150, 200}
- flow demand [m³/h]: {25, 30, 35}
- number pressure zones: {4, 5, 6, 7, 8}
- operating times [kh]: {10, 15, 20, 25}

180 instances

Computational Results Branch and Bound

# zone	S		К						
	-	0	1	2	3	4			
6	time	58.02	114.51	169.32	261.31	306.73			
	solved	36	36	36	36	36			
	$(\mathcal{Z}' / \mathcal{Z}) \cdot 100$	_	13.53	3.79	1.18	0.19			
	enumerated sp. trees	1.00	1.00	0.96	0.80	0.65			
7	time	412.62	847.73	1087.60	1252.01	1414.59			
	solved	36	36	36	36	36			
	$(\mathcal{Z}' / \mathcal{Z}) \cdot 100$	_	14.20	2.50	0.80	0.14			
	enumerated sp. trees	1.00	0.99	0.95	0.76	0.61			
8	time	3315.81	6388.67	6733.21	6570.97	6451.66			
	solved	36	22	15	10	11			
	$(\mathcal{Z}' / \mathcal{Z}) \cdot 100$	_	15.80	2.17	0.39	0.05			
	enumerated sp. trees	1.00	0.98	0.89	0.61	0.48			

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 33

Outline

- Water Distribution Networks Model
- 2 Branch and Bound Solving Scheme
- 3 Resilience
- 4 Concluding Remarks

Conclusions

Summary:

- Resilient water distribution networks can quite efficiently be computed using an adapted branch and bound algorithm.
- ▷ Key properties: tree shape, fixed flow, convexity of characteristic diagram
- treatment of component failures using a separation scheme

Future research:

- ▷ Try to adapt techniques to the case with cycles.
- ▷ Transfer of failure consideration to further applications.

Conclusions

Summary:

- Resilient water distribution networks can quite efficiently be computed using an adapted branch and bound algorithm.
- ▷ Key properties: tree shape, fixed flow, convexity of characteristic diagram
- treatment of component failures using a separation scheme

Future research:

- ▷ Try to adapt techniques to the case with cycles.
- ▷ Transfer of failure consideration to further applications.

Thank you!