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Overview

Topics of this talk:

. water distribution networks for tall buildings

. global solution of mixed-integer nonlinear programs

. energy efficient control of pumps

. topology/layout optimization

. robust optimization (resilience, interdiction)

.  min max min structure

Goals of this talk:

. show how particular structure can help

. demonstrate methods for resilience
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Literature – Selection

Water network optimization:
. D’Ambrosio et al (2015) [overview]
. Mala-Jetmarova, Sultanova, and Savic (2017) [models]
. Kolb and Lang (2012) [PDE]
. Geißler et al. (2012) [control with integer variables]

Topology optimization:
. De Corte A, Sörensen K (2013) [overview]
. Bragalli et al. (2012) [diameter optimization]

Robustness:
. Robinius et al. (2018) [tree shaped robust networks]
. Meng et al. (2018) [resilience]

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 3



Outline

1 Water Distribution Networks – Model
2 Branch and Bound Solving Scheme
3 Resilience
4 Concluding Remarks

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 4



High-Rise Water Supply Systems

For water supply in high buildings:

. Need pumps to overcome gravity.

. Corresponding energy costs are
significant.

www.pixabay.com
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High-Rise Water Supply Systems

State of the art:

. Place pumps in basement and
connect floors by one pipe strand.

. Energy inefficient: would need less
pressure for lower levels.

g
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High-Rise Water Supply Systems

Decentralized approach:
Optimize costs of

. interconnection of pressure zones,

. placement of pumps, and

. operating speed of pumps

to supply building with water.

g
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Mixed-Integer Nonlinear Program (MINLP)

. Steady state setting

. Continuous variables for physical quantities:
I pressure head h,
I volume flow q,
I power p, and
I normalized rotating speed ω.

. Binary variables for the following decisions:
I Which pipe should be selected?
I Where to place a pump of a given pump type?

. Constraints (non-convex):
I nonlinear pump characteristics,
I hydraulic resistance laws,
I flow conditions in the pipe network, and
I binary decisions for components (on/off).

. Objective:
I Minimize combination of operating and investment costs.
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Pipe Connections

. Base graph G = (V , A)
I V = {0, ... , N}
I A = {(u, v ) ∈ V × V : u < v}

. xa = 1 if connection a is used

. Feasible connections
I form a spanning tree rooted in 0
I

∑
a∈δ−(v )

xa = 1, v ∈ V

0

1

2

3

4
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Pump Placement

. Set of different pump types C

. On each connection different types in series

. Up to M of each type in parallel

. ym
a,i = 1 if pump type i is built m times on a

.

M∑
m=1

ym
a,i ≤ xa, a ∈ A, i ∈ C aa a

bb b

cc c

C = {a, b, c}
M = 3
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Flow and Pressure

. Volume flow demand of D at each pressure zone

. qa = flow along connection a

. hv = pressure difference of zone v to inlet

. ∆ha,i = pressure increase of type i pumps on a

. Flow balance

. Input and minimal pressure
h0 = 0, hv ≥ Hmin

v , v ∈ V \ {0}
. Friction on pipe R (Darcy-Weisbach)

Ra(q) = λ 1
d5

a

8
π2

q2

g La

. Pressure distribution for a = (u, v ) ∈ A:
xa = 1 ⇒ hv ≤ hu +

∑
i∈C

∆ha,i − La − Ra(qa)

0

1

2

3

4

q(0,1) = D

a aq(1,2) = 2D

aq(0,3) = D

q(2,4) = D
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Pump Characteristic Diagrams
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Mixed-Integer Nonlinear Program

min
∑
a∈A

Cpi
axa +

∑
a∈A

∑
i∈C

M∑
m=1

Cpu

i m ym
a,i + Cen

∑
a∈A

∑
i∈C

pa,i

s.t.
∑

a∈δ−(v )

qa −
∑

a∈δ+(v )

qa = D, v ∈ V , 0 ≤ qa ≤ N D xa, a ∈ A,

∆ha,i =
M∑

m=1

∆Hi

(qa

m
,ωa,i

)
ym

a,i , a ∈ A, i ∈ C,
M∑

m=1

ym
a,i ≤ 1, a ∈ A, i ∈ C,

pa,i =
M∑

m=1

m Pi

(qa

m
,ωa,i

)
ym

a,i , a ∈ A, i ∈ C,
∑

a∈δ−(v )

xa = 1, v ∈ V ,

(
αi

qa

m
+ β i ∆ha,i − γ i

)
ym

a,i ≤ 0,
a ∈ A, i ∈ C,
m ∈ [M],

hv ≥ H, v ∈ V \ {0},(
hv − hu −

∑
i∈C

∆ha,i + La + Ra(qa)
)

xa = 0, a = (u, v ) ∈ A, h0 = H0,

x ∈ {0, 1}A, y ∈ {0, 1}A×C×[M], q ∈ RA
+ , ω ∈ [ω, 1]A×C , ∆h ∈ RA×C

+ , p ∈ RA×C
+ , h ∈ RV

+ .
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Example of Optimal Solution

. Hotel, 100 m tall, 7 pressure zones

. Total flow demand 28 m3/h

. Operating time 21000 h

. 3 pump types, placeable up to 5 times in parallel
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Outline

1 Water Distribution Networks – Model
2 Branch and Bound Solving Scheme
3 Resilience
4 Concluding Remarks
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Branch and Bound Algorithm

init U =∞ and T = {T} with VT = {0, 1} and AT = {(0, 1)}
while T 6= ∅ do

choose and remove a partial tree T from T
solve relaxation for T and denote its optimal value O
if O < U (else fathom node)

if T spans G
solve exact problem for T and denote its optimal value O∗

update U = min{U, O∗}
else

form new partial trees from T and add to T (branching)
return U;

. Exploit tree property: Pipe topology determines volume flow.

. Enumerate partial trees of G using a Branch and Bound scheme.

. Subproblems: optimal placement and operation of pumps for given tree.
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Optimal Pump Placement and Operation
Hidden convexity for fixed flow

Pump Description

{(y , p,∆h) ∈ {0, 1} ×R2
+ : p ≥ P̃q(∆h) y , ∆H(q,ω) y ≤ ∆h ≤ ∆H(q, 1) y}

. Consider fixed flow q.

. P̃q(∆h) formed by elimination of ω from
∆H(q,ω) and plugging into P(q,ω).

. Observation: P̃q(∆h) is convex for the given
bounds

. Verified for particular pumps by solving a MINLP

. ⇒ perspective cuts ([Frangioni, Gentile 2006])

. p ≥ P̃′q(∆h∗)∆h +
(
P̃q(∆h∗)− P̃′q(∆h∗)∆h

)
y .

. Validity: y = 0→ ∆h = 0→ p ≥ 0;
y = 1→ p ≥ P̃q(∆h) y .

0
∆H(q,ω)

∆H(q, 1)

y

p

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 17



Optimal Pump Placement and Operation
Hidden convexity for fixed flow

Pump Description

{(y , p,∆h) ∈ {0, 1} ×R2
+ : p ≥ P̃q(∆h) y , ∆H(q,ω) y ≤ ∆h ≤ ∆H(q, 1) y}

. Consider fixed flow q.

. P̃q(∆h) formed by elimination of ω from
∆H(q,ω) and plugging into P(q,ω).

. Observation: P̃q(∆h) is convex for the given
bounds

. Verified for particular pumps by solving a MINLP

. ⇒ perspective cuts ([Frangioni, Gentile 2006])

. p ≥ P̃′q(∆h∗)∆h +
(
P̃q(∆h∗)− P̃′q(∆h∗)∆h

)
y .

. Validity: y = 0→ ∆h = 0→ p ≥ 0;
y = 1→ p ≥ P̃q(∆h) y .

0
∆H(q,ω)

∆h∗
∆H(q, 1)

y

p

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 17



Optimal Pump Placement and Operation
Hidden convexity for fixed flow

Pump Description

{(y , p,∆h) ∈ {0, 1} ×R2
+ : p ≥ P̃q(∆h) y , ∆H(q,ω) y ≤ ∆h ≤ ∆H(q, 1) y}

. Consider fixed flow q.

. P̃q(∆h) formed by elimination of ω from
∆H(q,ω) and plugging into P(q,ω).

. Observation: P̃q(∆h) is convex for the given
bounds

. Verified for particular pumps by solving a MINLP

. ⇒ perspective cuts ([Frangioni, Gentile 2006])

. p ≥ P̃′q(∆h∗)∆h +
(
P̃q(∆h∗)− P̃′q(∆h∗)∆h

)
y .

. Validity: y = 0→ ∆h = 0→ p ≥ 0;
y = 1→ p ≥ P̃q(∆h) y .

0
∆H(q,ω)

∆h∗
∆H(q, 1)

y

p

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 17



Relaxation

For partial tree T :

. Fixed path PT
v from 0 to each v ∈ VT

. supply only zones in VT

0

1

2

3

4

Q(0,1) = 1

Q(0,1) = 3

Q(1,2) = 1

Q(1,2) = 3

0

1
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4
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Relaxation
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Relaxation

For partial tree T :

. Fixed path PT
v from 0 to each v ∈ VT

. supply only zones in VT

. bound flow on connections in AT

. relax characteristic diagram using
best-case values

∆H i (Q, Q) = max ∆h

s. t. (∆h, q,ω) is feasible for pump i ,

q ∈ [Q, Q]

P i (Q, Q) = min Pi (q,ω)

s. t. (∆h, q,ω) is feasible for pump i ,

q ∈ [Q, Q]

Q Q

∆H i (Q, Q)

Q Q

P i (Q, Q)
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Relaxation Model

Relaxation model for partial tree T

min
∑
a∈AT

Cpi
a xa +

∑
a∈AT

∑
i∈C

M∑
m=1

m
(

Cpu
i + Cen P i

(Qa

m , Qa
m

))
ym

a,i

s. t.
∑

a∈PT
v

∑
i∈C

M∑
m=1

∆H i
(Qa

m , Qa
m

)
ym

a,i ≥ Hmin, v ∈ VT \ {0},

M∑
m=1

ym
a,i ≤ 1, a ∈ AT , i ∈ C,

y ∈ {0, 1}AT×C×[M].
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Computational Results

Comparison of MINLP and adapted branch and bound scheme:

# zones MINLP B-and-B

gap time solved time time relax solved

4 0.00 111.27 36 2.20 0.29 36
5 3.90 1383.68 31 11.24 1.81 36
6 50.51 5929.19 10 58.02 11.45 36
7 142.31 7200.00 0 412.62 92.23 36
8 239.19 7200.00 0 3315.81 786.77 36

. SCIP 6.0.2, CPLEX 12.8.0, 2h time limit

. Gap: arithmetic mean of MINLP gap

. Time: shifted geometric mean of solving time in s with shift 5 s

. Solved: # solved instances

. 36 instances/cluster

. Initialize with optimal solution to compare strength of dual bounds.

. Use perspective cuts in validation MINLP.
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Resilience in Engineering

Resilience of Technical Systems

A resilient technical system enables an operation even under disturbances or
failure of system components to a pre-defined minimal functioning level.

Latin “resilire” – “rebound”, “return”

Paradigm Shift

What if? ⇒ Whatever happens!
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Resilience vs. Robust Optimization

Buffering Capacity

A design with connections x and pumps y has a buffering capacity of K if any
failure of up to K pumps can be tolerated on reduced functioning level.

That is: system is robust against failure of up to K pumps (interdiction).

. Goal: find cost optimal design with buffering capacity K .

. Flow can still flow through pumps if they fail.

. For recourse strategy ignore energy consumption in case of failure.

. Model resilience for given fixed tree, since it is complex to model resilience
with respect to connections x and pumps y using MINLP-techniques.
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Buffering Capacity For Fixed Tree

Set of pump failure scenarios:

Z =
{

z ∈ {0, ... , M}A×C :
∑
a∈A

∑
i∈C

za,i ≤ K
}

Theorem
A tree T ∈ T and pump purchase decision y ∈ {0, 1}A×C×[M] has buffering
capacity of K if and only if

∑
a∈PT

v

∑
i∈C

M∑
m=1+za,i

∆H i
( Qa

(m−za,i )
, Qa

(m−za,i )

)
ym

a,i ≥ Hmin
v (?)

holds for each pressure zone v ∈ V \ {0} and failure scenario z ∈ Z .

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 24



Inclusion into Branch and Bound Algorithm

. Dynamically separate (?) since Z grows exponentially in K .

. Find a worst-case failure scenario z ∈ Z for given x and y .

. Solve for fixed pressure zone v

min
∑

a∈PT
v

∑
i∈C

M∑
m=1+za,i

∆H i

(
Qa

(m−za,i )
, Qa

(m−za,i )

)
ym

a,i

s. t. z ∈ Z =
{

z ∈ {0, ... , M}A×C :
∑
a∈A

∑
i∈C

za,i ≤ K
}

.

. Structure similar to knapsack

Theorem
Theorem: Solvable by dynamic programming in O(N|C|MK 2) steps.

FGS, September 19, 2019 | Resilient and Efficient Layout of Water Distribution Networks | Marc Pfetsch | 25



Modified Branch and Bound Algorithm

init U =∞, Z ′ = ∅ and T = {T} with VT = {0, 1} and AT = {(0, 1)};
while T 6= ∅ do

choose and remove a partial tree T from T
solve relaxation for T with Constraint (?) for z ∈ Z ′ and denote its optimal value O
if O < U (else fathom node)

if T spans G
solve exact problem for T by separating (?) and denote its optimal value O∗

add separated scenarios to Z ′
update U = min{U, O∗}

else
form new trees from T and add to T (branching)

return U;
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Optimal Solutions
Using specialized solution algorithm

K = 0 K = 1 K = 2 K = 3
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Cost Comparison
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Higher resilience leads to greater overall costs, mainly due to investment costs.
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Comparison of System Power

What is the maximal volume flow that can
be transported after failures?

. Resilient solutions are oversized for
standard operation.

. K = 2 solution has greatest
reserves, thus resilience 6=
redundancy.
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Robustness to demand shift

. Parameterize a change in demand using λ ∈ [−1, 1].
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Robustness to demand shift
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. Increased resilience leads to increased performance range and radius of
performance.
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Test Setting

. Fixed parameters
I 5 pump types, at most 3 parallel
I fixed minimum pressure in each zone
I fixed energy costs

. Variable parameters
I building height [m]:

{100, 150, 200}
I flow demand [m3/h]:

{25, 30, 35}
I number pressure zones:

{4, 5, 6, 7, 8}
I operating times [kh]:

{10, 15, 20, 25}
. 180 instances
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Computational Results
Branch and Bound

# zones
K

0 1 2 3 4

6

time 58.02 114.51 169.32 261.31 306.73
solved 36 36 36 36 36
(|Z′|/|Z|) · 100 – 13.53 3.79 1.18 0.19
enumerated sp. trees 1.00 1.00 0.96 0.80 0.65

7

time 412.62 847.73 1087.60 1252.01 1414.59
solved 36 36 36 36 36
(|Z′|/|Z|) · 100 – 14.20 2.50 0.80 0.14
enumerated sp. trees 1.00 0.99 0.95 0.76 0.61

8

time 3315.81 6388.67 6733.21 6570.97 6451.66
solved 36 22 15 10 11
(|Z′|/|Z|) · 100 – 15.80 2.17 0.39 0.05
enumerated sp. trees 1.00 0.98 0.89 0.61 0.48
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Conclusions

Summary:

. Resilient water distribution networks can quite efficiently be computed using
an adapted branch and bound algorithm.

. Key properties: tree shape, fixed flow, convexity of characteristic diagram

. treatment of component failures using a separation scheme

Future research:

. Try to adapt techniques to the case with cycles.

. Transfer of failure consideration to further applications.

Thank you!
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