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Introduction: nonsmoothness provides recovery, stability, identification

Nonsmoothness: curse and blessing

Convex optimization

min
x2Rd

f(x) f : Rd !R not di↵erentiable everywhere (though a.e.)

Nonsmoothness is known to be a major di�culty for optimization /
Implicit nonsmoothness (e.g. robust/stoch. optim., Lagrangian/Benders decompositions,...)

f(x) = sup u2U h(u, x) with h(u, ·) convex and U arbitrary

In this talk: Nonsmoothness is sometimes a desirable property ,
Chosen nonsmoothness (e.g. image processing, machine learning,...)

f(x) = F(x) + R(x) with F smooth and R nonsmooth

Nonsmoothness brings strong structure to optimization problems...

...o↵ers extra-properties and can help in practice !
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Introduction: nonsmoothness provides recovery, stability, identification

Example: `1-regularized least-squares & recovery

min
x2Rd

1
2
kA x � yk2 + �kxk1 (LASSO)

Nonsmoothness of k · k1

promotes sparse solutions
(many zero entries)

(opt. cond. `1 vs `2)

Recovery: compressed sensing

Noisy observation y = A x0 + w 2 Rn of a sparse x0 2 Rd

Choosing `1-norm allows to recover x0 and the support of x0...

...when the problem is well-conditioned

E.g. A gaussian + enough observations [Candès et al ’05] [Dossal et al ’11]

model recovery when P = ⌦(kx0k0 log N)

A lot of research on recovery e.g. [Fuchs ’04] [Grasmair ’10] [Vaiter ’14]...

Nonsmoothness reveals underlying structure

2
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Introduction: nonsmoothness provides recovery, stability, identification

Example: `1-regularized least-squares & stability

min
x2Rd

1
2
kA x � yk2 + �kxk1 (LASSO)

Stability: the support of optimal solutions is stable under small perturbations

Illustration (on an instance with d = 2)
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Introduction: nonsmoothness provides recovery, stability, identification

Example: `1-regularized least-squares & identification

min
x2Rd

1
2
kA x � yk2 + �kxk1 (LASSO)

Identification: (proximal-gradient) algorithms produce iterates...

...that eventually have the same support as the optimal solution
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Introduction: nonsmoothness provides recovery, stability, identification

Nonsmoothness can help...

To sum up on `1-regularized least-squares

min
x2Rd

1
2
kA x � yk2 + �kxk1

Nonsmoothness

8
<

:

reveals underlying structure (recovery)
traps solutions in low-dimensional manifolds (stability)
attracts (proximal) algorithms (identification)

Beyong `1-norm: F smooth and many R nonsmooth

min
x2Rd

F(x) + R(x)

In this talk

Illustrate stability and identification

2 applications in machine learning

– practical application: communication-e�cient distributed proximal-gradient

– theoretical application: model consistency for regularized least-squares

High level: ideas on recent research (but skip details/maths + missing refs)

5
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Stability of mirror-stratifiable regularizers

Stability or sensitivity analysis

Nonsmoothness traps solutions in low-dimensional manifolds

Parameterized composite optimization problem (smooth + nonsmooth)

min
x2Rd

F(x, p) + R(x),

Stability: Optimal solutions lie on a manifold: x?(p) 2 M for p⇠p0

See [Lewis ’02] sensitivity analysis of partly-smooth functions

Used/studied in e.g. [Hare Lewis ’10] [Vaiter et al ’15] [Liang et al ’16]...

Example 1: R = k · k1, supp
�
x?(p)

�
= supp

�
x?(p0)

�

Example 2: R = ◆B1 (indicator function)

projection onto the `1 ball

Stability holds for many nonsmooth R...

... let’s exploit their strong structure !

6
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Stability of mirror-stratifiable regularizers

Strong structure of nonsmooth regularizers

Many of the regularizers used in machine learning or image processing

have a strong primal-dual structure – mirror-stratifiable [Fadili, M., Peyré ’17]

Examples: (associated unit ball and low-dimensional manifold where x belongs)

R = k · k1 ( and k · k1 or other polyedral gauges)

nuclear norm (aka trace-norm) R(X) =
P

i |�i(X)| = k�(X)k1

group-`1 R(x) =
P

b2B kxbk2 ( e.g. R(x) = kx1,2k + |x3| )

x
Mx

Mx ={z : supp(z)= supp(x)}

Mx ={z : rank(z)= rank(x)} Mx = {0} ⇥ {0} ⇥ R

7
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Examples: (associated unit ball and low-dimensional manifold where x belongs)

R = k · k1 ( and k · k1 or other polyedral gauges)

nuclear norm (aka trace-norm) R(X) =
P

i |�i(X)| = k�(X)k1

group-`1 R(x) =
P

b2B kxbk2 ( e.g. R(x) = kx1,2k + |x3| )

x
Mx

Mx ={z : supp(z)= supp(x)}

x Mx

Mx ={z : rank(z)= rank(x)}

Mx = {0} ⇥ {0} ⇥ R

7



Stability of mirror-stratifiable regularizers

Strong structure of nonsmooth regularizers

Many of the regularizers used in machine learning or image processing

have a strong primal-dual structure – mirror-stratifiable [Fadili, M., Peyré ’17]
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Stability of mirror-stratifiable regularizers

Recall on stratifications

A stratification of a set D ⇢ Rd is a (finite) partition M = {Mi}i2I

D =
[

i2I

Mi

with so-called “strata” (e.g. smooth/a�ne manifolds) which fit nicely:

M \ cl(M0) 6= ; =) M ⇢ cl(M0)

This relation induces a (partial) ordering M 6 M0

Example: B1 the unit `1-ball in R2

a stratification with 9 (a�ne) strata

M1 6 M2 6 M4

M1 6 M3 6 M4

M1M2

M3
M4

8
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Stability of mirror-stratifiable regularizers

Mirror-stratifiable function

(primal) stratification M = {Mi}i2I and (dual) stratification M⇤ = {M⇤
i }i2I

in one-to-one decreasing correspondence

through the transfert operator JR(S) =
[

x2S

ri(@R(x))

Simple example: R = ◆B1 R⇤ = k · k1

M1M2

M3
M4

M�
1

M�
2

M�
3

M�
4

JR

JR⇤

JR(Mi) =
[

x2Mi

ri @R(x) = ri N B1 (x) = M⇤
i Mi = ri @kxk1 =

[

x2M⇤
i

ri @R⇤(x) = JR⇤ (M⇤
i )

9



Stability of mirror-stratifiable regularizers

Enlarged stability illustrated

Simple problem
(

min 1
2kx � pk2

kxk1 6 1

(
min 1

2ku � pk2 + kuk1

u 2 Rn

Non-degenerate case: u?(p0) = p0 � x?(p0) 2 ri NB1(x?(p0))

=) M1 = Mx?(p0) = Mx?(p) (in this case x?(p) = x?(p0))

x�(p0)

p0

u�(p0)

M�
1

p

u�(p)

10
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Stability of mirror-stratifiable regularizers

Enlarged sensitivity result

Theorem (Fadili, M., Peyré ’17)

For the composite optimization problem (smooth + nonsmooth)

min
x2Rd

F(x, p) + R(x),

satisfying mild assumptions (unique minimizer x?(p0) at p0 and objective uniformly

level-bounded in x), if R is mirror-stratifiable, then for p⇠p0,

Mx?(p0) 6 Mx?(p) 6 JR⇤(M⇤
u?(p0))

If R = k · k1, then supp(x?(p0)) ✓ supp(x?(p)) ✓ {i : |u?(p0)i| = 1}

Remark: Optimality conditions for a primal-dual solution (x?(p), u?(p))

u?(p) = �rF(x?(p), p) 2 @R(x?(p))

In the non-degenerate case: u?(p0) 2 ri
�
@R(x?(p0))

�

Mx?(p0) = Mx?(p)
�
= JR⇤(M⇤

u?(p0))
�

we retrieve exactly the active strata ([Lewis ’02] for partly-smooth functions)

Nonsmoothness traps solutions in low-dimensional manifolds
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Identification of proximal algorithms

Activity identification

Nonsmoothness attracts (proximal) algorithms

Composite optimization problem (smooth + nonsmooth)

min
x2Rd

F(x) + R(x)

Proximal-gradient algorithm (aka forward-backward algorithm)

xk+1 = prox�R

�
xk � �rF(xk)

�

prox�R(x) = argmin
y

R(y) +
1

2�
ky � xk2

Identification: beyond convergence

after a finite moment of time K, all iterates xk (k > K) lie in an active set M

Well-studied, [Bertsekas ’76], [Wright ’96], [Lewis Drusvyatskiy ’13]...
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Identification of proximal algorithms

Enlarged activity identification

Theorem (Fadili, M., Peyré ’17)

Under convergence assumptions, if R is mirror-stratifiable, then for k > K

Mx? 6 Mxk 6 JR⇤(M⇤
�rF(x?))

Optimality condition �rF(x?) 2 @R(x?)

In the non-degenerate case: �rF(x?) 2 ri
�
@R(x?))

�

we have exact identification Mx? = Mxk

�
= JR⇤(M⇤

�rF(x?))
�
[Liang et al 15]

In the general case: � quantifies the degeneracy of the problem

� = dim(JR⇤(M⇤
�rF(x?)))� dim(Mx?)

� = 0 : weak degeneracy (fast convergence and identification)

� large : strong degeneracy (slow convergence and identification)

Note: � and K are not computable beforehand in general...
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Mx? 6 Mxk 6 JR⇤(M⇤
�rF(x?))

Optimality condition �rF(x?) 2 @R(x?)

In the non-degenerate case: �rF(x?) 2 ri
�
@R(x?))

�

we have exact identification Mx? = Mxk

�
= JR⇤(M⇤

�rF(x?))
�
[Liang et al 15]

In the general case: � quantifies the degeneracy of the problem

� = dim(JR⇤(M⇤
�rF(x?)))� dim(Mx?)

� = 0 : weak degeneracy (fast convergence and identification)

� large : strong degeneracy (slow convergence and identification)

Note: � and K are not computable beforehand in general...
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Identification of proximal algorithms

Illustration with nuclear norm

Matrix least-squares regularized by nuclear norm (kXk⇤ = k�(X)k1)

min
X2Rd=m⇥m

1
2
kA(X)� yk2 + �kXk⇤

Generate many random problems (with m = 20 and n = 300), solve them

Select those with rank(X?)=4 and �= 0 or 3 (�=#{i : |�i(U?)|=1} � rank(X?))

Plot the decrease of rank(Xk) with Xk+1 = prox�k·k⇤

�
Xk � � A⇤(A(Xk)� y))

�

� = 0: weak degeneracy vs. � = 3: strong degeneracy

Nonsmoothness attracts (proximal) algorithms
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Application: communication-e�cient distributed learning

Machine learning in a nutschell

Supervised learning set-up

Data (aj, yj)j=1,...,n, prediction h(·, x), model parameters x 2 Rd

(Regularized) empirical risk minimization (learning is optimizing !)

min
x2Rd

1
n

nX

j=1

`
�
yj, h(aj, x)

�
(+ �R(x))

(Standard) centralized learning
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Application: communication-e�cient distributed learning

Machine learning in a nutschell

Supervised learning set-up

Data (aj, yj)j=1,...,n, prediction h(·, x), model parameters x 2 Rd

(Regularized) empirical risk minimization (learning is optimizing !)

min
x2Rd

1
n

nX

j=1

`
�
yj, h(aj, x)

�
(+ �R(x))

(Standard) centralized learning
needs of lot of storage /
is highly privacy invasive /
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Application: communication-e�cient distributed learning

Nonsmooth regularization for distributed learning

Distributed (or federative) set-up

�94

DataDataDataData

CENTRALISED LEARNING SETUP

Model

Data

Observation: identification gives automatic model compression

e.g. for R=k · k1, model becomes sparse... just communicate nonzero entries!

[Grishchenko, Iutzeler, M. ’19] uses again identification for update comp.

Project update onto Mxk + randomly selected M
e.g. for R=k · k1, select current support + random entries

Algo with intricate convergence analysis due to non-uniform selection...
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[Grishchenko, Iutzeler, M. ’19] uses again identification for update comp.

Project update onto Mxk + randomly selected M
e.g. for R=k · k1, select current support + random entries
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Application: communication-e�cient distributed learning

Illustration of communication-e�cient proximal method

On an instance of TV-regularized logistic regression (a1a dataset on 10 machines)

min
x2Rd

1
n

nX

j=1

log
�
1+exp(�yjhaj, xi

�
+ �TV(x) Total Variation

TV(x) =
n�1X

i=1

|xi+1 � xi|

Comparison of Usual distributed proximal-gradient (black)

Adaptive distributed proximal-subspace descent (red)
for di↵erent selections Mxk + random others
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Acceleration... with respect to data-exchanged !

Tradeo↵ between compression (less comm.) and identification (faster cv)
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Application: model consistency in supervised learning

Supervised learning: model consistency ?

Assume data (ai, yi)i=1,...,n are sampled from linear model

y = ha, x0i+ w with random (a,w) (of unknown probability measure ⇢)

Structure assumption: x0 has a low-complexity for R
x0 = argminx2Rd

n
R(x) : x 2 argminz2Rd E⇢

h
(ha, zi � y)2

io

Regularized least-squares (if R=k · k1, this is LASSO)

min
x2Rd

1
2n

nX

i=1

(hai, xi � yi)
2 + �n R(x)

Stochastic (proximal-)gradient algorithms (at iteration k, pick randomly i(k))

xk+1 = prox�k�nR

�
xk � �k

�
(hai(k), xki � yi(k)) ai(k) + "k

��

E.g. SGD, SAGA [Delfazio et al ’14], SVRG [Xiao-Zhang ’14]

Do we have model recovery/consistency i.e. xk 2 Mx0 ?

(when number of observations n!+1)

18



Application: model consistency in supervised learning

Supervised learning: model consistency ?

Assume data (ai, yi)i=1,...,n are sampled from linear model

y = ha, x0i+ w with random (a,w) (of unknown probability measure ⇢)

Structure assumption: x0 has a low-complexity for R
x0 = argminx2Rd

n
R(x) : x 2 argminz2Rd E⇢

h
(ha, zi � y)2

io

Regularized least-squares (if R=k · k1, this is LASSO)

min
x2Rd

1
2n

nX

i=1

(hai, xi � yi)
2 + �n R(x)

Stochastic (proximal-)gradient algorithms (at iteration k, pick randomly i(k))

xk+1 = prox�k�nR

�
xk � �k

�
(hai(k), xki � yi(k)) ai(k) + "k

��

E.g. SGD, SAGA [Delfazio et al ’14], SVRG [Xiao-Zhang ’14]

Do we have model recovery/consistency i.e. xk 2 Mx0 ?

(when number of observations n!+1)

18



Application: model consistency in supervised learning

Enlarged identification of stochastic algorithms

Theorem (Garrigos, Fadili, M., Peyré ’18)

Take �n ! 0 with �n
p

n/(log log n) ! +1. If n large enough and for

xk+1 = prox�k�nR

�
xk � �k

�
(hai(k), xki � yi(k)) ai(k) + "k

��

with mild assumptions on errors "k and stepsizes �k. Then, for k large, a.s.

Mx0 6 M xk 6 JR⇤(M⇤
⌘0)

with ⌘0 = argmin
⌘2Rp

n
⌘>C†⌘ : ⌘ 2 @R(w0) \ Im C

o
and C = E⇢

h
aa>

i

Comments:

key dual object ⌘02@ R(x0) [Vaiter et al ’16]

�n decreases to 0, but not too fast

SAGA and SVRG satisfy the “mild”
assumption [Poon et al ’18]

(Prox-)SGD does not – and does not
identify (e.g. [Lee Wright ’12])

(on a LASSO instance)
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Application: model consistency in supervised learning

Conclusion, perspectives

Take-home message

Nonsmooth regularizers are useful in models, in theory, and in practice

Compressed communinations by adaptative dimension reduction

Better understanding of optim. algos (beyond convergence)

Enlarged localization results (explaining observed phenomena)

Extensions

Many possible refinements of sensitivity results
other data fidelity terms, a priori control on strata dimension, explaining transition curves...

Use identification to accelerate convergence
interplay between identification and acceleration

Subspace descent algorithms generalizing coordinate descent
for nonseparable functions

thanks !!
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