Nonsmoothness can help:

sensitivity analysis and acceleration of proximal algorithms

Jérôme MALICK

CNRS, Laboratoire Jean Kuntzmann, Grenoble (France)

French-German-Swiss Conference on Optimization
FGS'2019 - September 2019 - Nice

Nonsmoothness: curse and blessing

Convex optimization

$$
\min _{x \in \mathbb{R}^{d}} f(x) \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { not differentiable everywhere (though a.e.) }
$$

Nonsmoothness is known to be a major difficulty for optimization \odot

Implicit nonsmoothness (e.g. robust/stoch. optim., Lagrangian/Benders decompositions,...)

$$
f(x)=\sup _{u \in U} h(u, x) \quad \text { with } h(u, \cdot) \text { convex and } U \text { arbitrary }
$$

Nonsmoothness: curse and blessing

Convex optimization

$$
\min _{x \in \mathbb{R}^{d}} f(x) \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { not differentiable everywhere (though a.e.) }
$$

Nonsmoothness is known to be a major difficulty for optimization \odot

Implicit nonsmoothness (e.g. robust/stoch. optim., Lagrangian/Benders decompositions,...)

$$
f(x)=\sup _{u \in U} h(u, x) \quad \text { with } h(u, \cdot) \text { convex and } U \text { arbitrary }
$$

In this talk: Nonsmoothness is sometimes a desirable property $;$

Chosen nonsmoothness (e.g. image processing, machine learning,...)

$$
f(x)=F(x)+R(x) \quad \text { with } F \text { smooth and } R \text { nonsmooth }
$$

Nonsmoothness brings strong structure to optimization problems...
...offers extra-properties and can help in practice!

Example: ℓ_{1}-regularized least-squares \& recovery

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Example: ℓ_{1}-regularized least-squares \& recovery

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Nonsmoothness of $\|\cdot\|_{1}$ promotes sparse solutions
(many zero entries)

Example: ℓ_{1}-regularized least-squares \& recovery

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Nonsmoothness of $\|\cdot\|_{1}$ promotes sparse solutions
(many zero entries)

Recovery: compressed sensing

- Noisy observation $y=A x_{0}+w \in \mathbb{R}^{n}$ of a sparse $x_{0} \in \mathbb{R}^{d}$
- Choosing ℓ_{1}-norm allows to recover x_{0} and the support of $x_{0} \ldots$
- ...when the problem is well-conditioned
E.g. A gaussian + enough observations [Candès et al '05] [Dossal et al '11]

$$
\text { model recovery when } P=\Omega\left(\left\|x_{0}\right\|_{0} \log N\right)
$$

- A lot of research on recovery e.g. [Fuchs '04] [Grasmair '10] [Vaiter '14]...

Example: ℓ_{1}-regularized least-squares \& recovery

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Nonsmoothness of $\|\cdot\|_{1}$ promotes sparse solutions
(many zero entries)

Recovery: compressed sensing

- Noisy observation $y=A x_{0}+w \in \mathbb{R}^{n}$ of a sparse $x_{0} \in \mathbb{R}^{d}$
- Choosing ℓ_{1}-norm allows to recover x_{0} and the support of $x_{0} \ldots$
- ...when the problem is well-conditioned
E.g. A gaussian + enough observations [Candès et al '05] [Dossal et al '11]

$$
\text { model recovery when } P=\Omega\left(\left\|x_{0}\right\|_{0} \log N\right)
$$

- A lot of research on recovery e.g. [Fuchs '04] [Grasmair '10] [Vaiter '14]...

Nonsmoothness reveals underlying structure

Example: ℓ_{1}-regularized least-squares $\&$ stability

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Stability: the support of optimal solutions is stable under small perturbations
Illustration (on an instance with $d=2$)

Example: ℓ_{1}-regularized least-squares $\&$ stability

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Stability: the support of optimal solutions is stable under small perturbations
Illustration (on an instance with $d=2$)

Example: ℓ_{1}-regularized least-squares $\&$ stability

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Stability: the support of optimal solutions is stable under small perturbations
Illustration (on an instance with $d=2$)

Example: ℓ_{1}-regularized least-squares $\&$ stability

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Stability: the support of optimal solutions is stable under small perturbations
Illustration (on an instance with $d=2$)

Nonsmoothness traps solutions in low-dimensional manifolds

Example: ℓ_{1}-regularized least-squares \& identification

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Identification: (proximal-gradient) algorithms produce iterates...
...that eventually have the same support as the optimal solution

Runs of two proximal-gradient algos
(same instance with $d=2$)

Example: ℓ_{1}-regularized least-squares \& identification

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

Identification: (proximal-gradient) algorithms produce iterates...
...that eventually have the same support as the optimal solution

Runs of two proximal-gradient algos

$$
\text { (same instance with } d=2 \text {) }
$$

Nonsmoothness attracts (proximal) algorithms

Nonsmoothness can help...

To sum up on ℓ_{1}-regularized least-squares

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1}
$$

Nonsmoothness $\left\{\begin{array}{l}\text { reveals underlying structure (recovery) } \\ \text { traps solutions in low-dimensional manifolds (stability) } \\ \text { attracts (proximal) algorithms (identification) }\end{array}\right.$

Nonsmoothness can help...

To sum up on ℓ_{1}-regularized least-squares

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-y\|^{2}+\lambda\|x\|_{1}
$$

Nonsmoothness $\left\{\begin{array}{l}\text { reveals underlying structure (recovery) } \\ \text { traps solutions in low-dimensional manifolds (stability) } \\ \text { attracts (proximal) algorithms (identification) }\end{array}\right.$

Beyong ℓ_{1}-norm: F smooth and many R nonsmooth

$$
\min _{x \in \mathbb{R}^{d}} F(x)+R(x)
$$

In this talk

- Illustrate stability and identification
- 2 applications in machine learning
- practical application: communication-efficient distributed proximal-gradient
- theoretical application: model consistency for regularized least-squares
- High level: ideas on recent research (but skip details/maths + missing refs)

Outline
(1) Introduction: nonsmoothness provides recovery, stability, identification
(2) Stability of mirror-stratifiable regularizers
(3) Identification of proximal algorithms
(4) Application: communication-efficient distributed learning
(5) Application: model consistency in supervised learning

Outline

(1) Introduction: nonsmoothness provides recovery, stability, identification
(2) Stability of mirror-stratifiable regularizers

3 Identification of proximal algorithms
(4) Application: communication-efficient distributed learning
(5) Application: model consistency in supervised learning

Stability or sensitivity analysis

Nonsmoothness traps solutions in low-dimensional manifolds

Parameterized composite optimization problem (smooth + nonsmooth)

$$
\min _{x \in \mathbb{R}^{d}} F(x, p)+R(x),
$$

Stability: Optimal solutions lie on a manifold: $\quad x^{\star}(p) \in M$ for $p \sim p_{0}$ See [Lewis '02] sensitivity analysis of partly-smooth functions Used/studied in e.g. [Hare Lewis '10] [Vaiter et al '15] [Liang et al '16]...

Example 1: $R=\|\cdot\|_{1}, \operatorname{supp}\left(x^{\star}(p)\right)=\operatorname{supp}\left(x^{\star}\left(p_{0}\right)\right)$

Stability or sensitivity analysis

Nonsmoothness traps solutions in low-dimensional manifolds

Parameterized composite optimization problem (smooth + nonsmooth)

$$
\min _{x \in \mathbb{R}^{d}} F(x, p)+R(x),
$$

Stability: Optimal solutions lie on a manifold: $\quad x^{\star}(p) \in M$ for $p \sim p_{0}$ See [Lewis '02] sensitivity analysis of partly-smooth functions Used/studied in e.g. [Hare Lewis '10] [Vaiter et al '15] [Liang et al '16]...

Example 1: $R=\|\cdot\|_{1}, \operatorname{supp}\left(x^{\star}(p)\right)=\operatorname{supp}\left(x^{\star}\left(p_{0}\right)\right)$

Example 2: $R=\iota_{\mathbb{B}_{\infty}}$ (indicator function)
projection onto the ℓ_{∞} ball

Stability holds for many nonsmooth R...
... let's exploit their strong structure!

Strong structure of nonsmooth regularizers

Many of the regularizers used in machine learning or image processing have a strong primal-dual structure - mirror-stratifiable [Fadili, M., Peyré '17]

Examples: (associated unit ball and low-dimensional manifold where x belongs)

- $R=\|\cdot\|_{1} \quad$ (and $\|\cdot\|_{\infty}$ or other polyedral gauges)

$M_{x}=\{z: \operatorname{supp}(z)=\operatorname{supp}(x)\}$

Strong structure of nonsmooth regularizers

Many of the regularizers used in machine learning or image processing have a strong primal-dual structure - mirror-stratifiable [Fadili, M., Peyré '17]

Examples: (associated unit ball and low-dimensional manifold where x belongs)

- $R=\|\cdot\|_{1} \quad$ (and $\|\cdot\|_{\infty}$ or other polyedral gauges)
- nuclear norm (aka trace-norm) $\quad R(X)=\sum_{i}\left|\sigma_{i}(X)\right|=\|\sigma(X)\|_{1}$

$M_{x}=\{z: \operatorname{supp}(z)=\operatorname{supp}(x)\}$

$$
M_{x}=\{z: \operatorname{rank}(z)=\operatorname{rank}(x)\}
$$

Strong structure of nonsmooth regularizers

Many of the regularizers used in machine learning or image processing have a strong primal-dual structure - mirror-stratifiable [Fadili, M., Peyré '17]

Examples: (associated unit ball and low-dimensional manifold where x belongs)

- $R=\|\cdot\|_{1} \quad$ (and $\|\cdot\|_{\infty}$ or other polyedral gauges)
- nuclear norm (aka trace-norm) $\quad R(X)=\sum_{i}\left|\sigma_{i}(X)\right|=\|\sigma(X)\|_{1}$
- group $\ell_{1} \quad R(x)=\sum_{b \in \mathcal{B}}\left\|x_{b}\right\|_{2} \quad$ (e.g. $\left.R(x)=\left\|x_{1,2}\right\|+\left|x_{3}\right|\right)$

Recall on stratifications

A stratification of a set $D \subset \mathbb{R}^{d}$ is a (finite) partition $\mathcal{M}=\left\{M_{i}\right\}_{i \in I}$

$$
D=\bigcup_{i \in I} M_{i}
$$

with so-called "strata" (e.g. smooth/affine manifolds) which fit nicely:

$$
M \cap \operatorname{cl}\left(M^{\prime}\right) \neq \emptyset \quad \Longrightarrow \quad M \subset \operatorname{cl}\left(M^{\prime}\right)
$$

Example: \mathbb{B}_{∞} the unit ℓ_{∞}-ball in \mathbb{R}^{2} a stratification with 9 (affine) strata

Recall on stratifications

A stratification of a set $D \subset \mathbb{R}^{d}$ is a (finite) partition $\mathcal{M}=\left\{M_{i}\right\}_{i \in I}$

$$
D=\bigcup_{i \in I} M_{i}
$$

with so-called "strata" (e.g. smooth/affine manifolds) which fit nicely:

$$
M \cap \operatorname{cl}\left(M^{\prime}\right) \neq \emptyset \quad \Longrightarrow \quad M \subset \operatorname{cl}\left(M^{\prime}\right)
$$

This relation induces a (partial) ordering $M \leqslant M^{\prime}$

Example: \mathbb{B}_{∞} the unit ℓ_{∞}-ball in \mathbb{R}^{2}
a stratification with 9 (affine) strata

$$
\begin{aligned}
& M_{1} \leqslant M_{2} \leqslant M_{4} \\
& M_{1} \leqslant M_{3} \leqslant M_{4}
\end{aligned}
$$

Mirror-stratifiable function

(primal) stratification $\mathcal{M}=\left\{M_{i}\right\}_{i \in I}$ and (dual) stratification $\mathcal{M}^{*}=\left\{M_{i}^{*}\right\}_{i \in I}$ in one-to-one decreasing correspondence

$$
\text { through the transfert operator } \mathcal{J}_{R}(S)=\bigcup_{x \in S} \operatorname{ri}(\partial R(x))
$$

Simple example:

$$
R=\iota_{\mathbb{B}_{\infty}} \quad R^{*}=\|\cdot\|_{1}
$$

$$
\mathcal{J}_{R}\left(M_{i}\right)=\bigcup_{x \in M_{i}} \operatorname{ri} \partial R(x)=\operatorname{ri} N_{\mathbb{B}_{\infty}}(x)=M_{i}^{*} \quad M_{i}=\operatorname{ri} \partial\|x\|_{1}=\bigcup_{x \in M_{i}^{*}} \operatorname{ri} \partial R^{*}(x)=\mathcal{J}_{R^{*}}\left(M_{i}^{*}\right)
$$

Enlarged stability illustrated

Simple problem

$$
\left\{\begin{array} { c }
{ \operatorname { m i n } \quad \frac { 1 } { 2 } \| x - p \| ^ { 2 } } \\
{ \| x \| _ { \infty } \leqslant 1 }
\end{array} \quad \left\{\begin{array}{c}
\min \quad \frac{1}{2}\|u-p\|^{2}+\|u\|_{1} \\
u \in \mathbb{R}^{n}
\end{array}\right.\right.
$$

Non-degenerate case: $u^{\star}\left(p_{0}\right)=p_{0}-x^{\star}\left(p_{0}\right) \in$ ri $N_{\mathbb{B}_{\infty}}\left(x^{\star}\left(p_{0}\right)\right)$

$$
\Longrightarrow M_{1}=M_{x^{\star}\left(p_{0}\right)}=M_{x^{\star}(p)} \quad\left(\text { in this case } x^{\star}(p)=x^{\star}\left(p_{0}\right)\right)
$$

Enlarged stability illustrated

Simple problem

$$
\left\{\begin{array} { c }
{ \operatorname { m i n } \quad \frac { 1 } { 2 } \| x - p \| ^ { 2 } } \\
{ \| x \| _ { \infty } \leqslant 1 }
\end{array} \quad \left\{\begin{array}{c}
\min \quad \frac{1}{2}\|u-p\|^{2}+\|u\|_{1} \\
u \in \mathbb{R}^{n}
\end{array}\right.\right.
$$

General case: $u^{\star}\left(p_{0}\right)=p_{0}-x^{\star}\left(p_{0}\right) \in$ pí $N_{\mathbb{B}_{\infty}}\left(x^{\star}(p)\right)$

Enlarged stability illustrated

Simple problem

$$
\left\{\begin{array}{c}
\min \quad \frac{1}{2}\|x-p\|^{2} \\
\|x\|_{\infty} \leqslant 1
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\min \quad \frac{1}{2}\|u-p\|^{2}+\|u\|_{1} \\
u \in \mathbb{R}^{n}
\end{array}\right.
$$

General case: $u^{\star}\left(p_{0}\right)=p_{0}-x^{\star}\left(p_{0}\right) \in p^{\prime} N_{\mathbb{B}_{\infty}}\left(x^{\star}(p)\right)$

$$
\Longrightarrow M_{1}=M_{x^{\star}\left(p_{0}\right)} \leqslant M_{x^{\star}(p)} \leqslant \mathcal{J}_{R^{*}}\left(M_{u^{\star}\left(p_{0}\right)}^{*}\right)=M_{2}
$$

Enlarged sensitivity result

Theorem (Fadili, M., Peyré '17)
For the composite optimization problem (smooth + nonsmooth)

$$
\min _{x \in \mathbb{R}^{d}} F(x, p)+R(x)
$$

satisfying mild assumptions (unique minimizer $x^{\star}\left(p_{0}\right)$ at p_{0} and objective uniformly level-bounded in x), if R is mirror-stratifiable, then for $p \sim p_{0}$,

$$
M_{x^{\star}\left(p_{0}\right)} \leqslant M_{x^{\star}(p)} \leqslant \mathcal{J}_{R^{*}}\left(M_{u^{\star}\left(p_{0}\right)}^{*}\right)
$$

$$
\text { If } R=\|\cdot\|_{1} \text {, then } \quad \operatorname{supp}\left(x^{\star}\left(p_{0}\right)\right) \subseteq \operatorname{supp}\left(x^{\star}(p)\right) \subseteq\left\{i:\left|u^{\star}\left(p_{0}\right)_{i}\right|=1\right\}
$$

Enlarged sensitivity result

Theorem (Fadili, M., Peyré '17)
For the composite optimization problem (smooth + nonsmooth)

$$
\min _{x \in \mathbb{R}^{d}} F(x, p)+R(x)
$$

satisfying mild assumptions (unique minimizer $x^{\star}\left(p_{0}\right)$ at p_{0} and objective uniformly level-bounded in x), if R is mirror-stratifiable, then for $p \sim p_{0}$,

$$
M_{x^{\star}\left(p_{0}\right)} \leqslant M_{x^{\star}(p)} \leqslant \mathcal{J}_{R^{*}}\left(M_{u^{\star}\left(p_{0}\right)}^{*}\right)
$$

$$
\text { If } R=\|\cdot\|_{1} \text {, then } \quad \operatorname{supp}\left(x^{\star}\left(p_{0}\right)\right) \subseteq \operatorname{supp}\left(x^{\star}(p)\right) \subseteq\left\{i:\left|u^{\star}\left(p_{0}\right)_{i}\right|=1\right\}
$$

Remark: Optimality conditions for a primal-dual solution $\left(x^{\star}(p), u^{\star}(p)\right)$

$$
u^{\star}(p)=-\nabla F\left(x^{\star}(p), p\right) \in \partial R\left(x^{\star}(p)\right)
$$

In the non-degenerate case: $\quad u^{\star}\left(p_{0}\right) \in \operatorname{ri}\left(\partial R\left(x^{\star}\left(p_{0}\right)\right)\right)$

$$
M_{x^{\star}\left(p_{0}\right)}=M_{x^{\star}(p)} \quad\left(=\mathcal{J}_{R^{*}}\left(M_{u^{\star}\left(p_{0}\right)}^{*}\right)\right)
$$

we retrieve exactly the active strata ([Lewis '02] for partly-smooth functions)

Enlarged sensitivity result

Theorem (Fadili, M., Peyré '17)
For the composite optimization problem (smooth + nonsmooth)

$$
\min _{x \in \mathbb{R}^{d}} F(x, p)+R(x)
$$

satisfying mild assumptions (unique minimizer $x^{\star}\left(p_{0}\right)$ at p_{0} and objective uniformly level-bounded in x), if R is mirror-stratifiable, then for $p \sim p_{0}$,

$$
M_{x^{\star}\left(p_{0}\right)} \leqslant M_{x^{\star}(p)} \leqslant \mathcal{J}_{R^{*}}\left(M_{u^{\star}\left(p_{0}\right)}^{*}\right)
$$

$$
\text { If } R=\|\cdot\|_{1} \text {, then } \quad \operatorname{supp}\left(x^{\star}\left(p_{0}\right)\right) \subseteq \operatorname{supp}\left(x^{\star}(p)\right) \subseteq\left\{i:\left|u^{\star}\left(p_{0}\right)_{i}\right|=1\right\}
$$

Remark: Optimality conditions for a primal-dual solution $\left(x^{\star}(p), u^{\star}(p)\right)$

$$
u^{\star}(p)=-\nabla F\left(x^{\star}(p), p\right) \in \partial R\left(x^{\star}(p)\right)
$$

In the non-degenerate case: $\quad u^{\star}\left(p_{0}\right) \in \operatorname{ri}\left(\partial R\left(x^{\star}\left(p_{0}\right)\right)\right)$

$$
M_{x^{\star}\left(p_{0}\right)}=M_{x^{\star}(p)} \quad\left(=\mathcal{J}_{R^{*}}\left(M_{u^{\star}\left(p_{0}\right)}^{*}\right)\right)
$$

we retrieve exactly the active strata ([Lewis '02] for partly-smooth functions)
Nonsmoothness traps solutions in low-dimensional manifolds

Outline

(1) Introduction: nonsmoothness provides recovery, stability, identification
(2) Stability of mirror-stratifiable regularizers
(3) Identification of proximal algorithms
(4) Application: communication-efficient distributed learning
(5) Application: model consistency in supervised learning

Activity identification

Nonsmoothness attracts (proximal) algorithms

Composite optimization problem (smooth + nonsmooth)

$$
\min _{x \in \mathbb{R}^{d}} F(x)+R(x)
$$

Proximal-gradient algorithm (aka forward-backward algorithm)

$$
\begin{aligned}
x_{k+1}=\operatorname{prox}_{\gamma R}\left(x_{k}-\right. & \left.\gamma \nabla F\left(x_{k}\right)\right) \\
& \operatorname{prox}_{\gamma R}(x)=\underset{y}{\operatorname{argmin}} R(y)+\frac{1}{2 \gamma}\|y-x\|^{2}
\end{aligned}
$$

Identification: beyond convergence
after a finite moment of time K, all iterates $x_{k}(k \geqslant K)$ lie in an active set M Well-studied, [Bertsekas '76], [Wright '96], [Lewis Drusvyatskiy '13]...

Enlarged activity identification

Theorem (Fadili, M., Peyré '17)
Under convergence assumptions, if R is mirror-stratifiable, then for $k \geqslant K$

$$
M_{x^{\star}} \leqslant M_{x_{k}} \leqslant \mathcal{J}_{R^{*}}\left(M_{-\nabla F\left(x^{\star}\right)}^{*}\right)
$$

- Optimality condition $-\nabla F\left(x^{\star}\right) \in \partial R\left(x^{\star}\right)$

In the non-degenerate case: $\left.\quad-\nabla F\left(x^{\star}\right) \in \operatorname{ri}\left(\partial R\left(x^{\star}\right)\right)\right)$
we have exact identification $M_{x^{\star}}=M_{x_{k}}\left(=\mathcal{J}_{R^{*}}\left(M_{-\nabla F\left(x^{\star}\right)}^{*}\right)\right)$ [Liang et al 15]

Enlarged activity identification

Theorem (Fadili, M., Peyré '17)
Under convergence assumptions, if R is mirror-stratifiable, then for $k \geqslant K$

$$
M_{x^{\star}} \leqslant M_{x_{k}} \leqslant \mathcal{J}_{R^{*}}\left(M_{-\nabla F\left(x^{\star}\right)}^{*}\right)
$$

- Optimality condition $-\nabla F\left(x^{\star}\right) \in \partial R\left(x^{\star}\right)$

In the non-degenerate case: $\left.\quad-\nabla F\left(x^{\star}\right) \in \operatorname{ri}\left(\partial R\left(x^{\star}\right)\right)\right)$
we have exact identification $M_{x^{\star}}=M_{x_{k}}\left(=\mathcal{J}_{R^{*}}\left(M_{-\nabla F\left(x^{\star}\right)}^{*}\right)\right)$ [Liang et al 15]

- In the general case: δ quantifies the degeneracy of the problem

$$
\delta=\operatorname{dim}\left(\mathcal{J}_{R^{*}}\left(M_{-\nabla F\left(x^{\star}\right)}^{*}\right)\right)-\operatorname{dim}\left(M_{x^{\star}}\right)
$$

$\delta=0$: weak degeneracy (fast convergence and identification)
δ large : strong degeneracy (slow convergence and identification)

- Note: δ and K are not computable beforehand in general...

Illustration with nuclear norm
Matrix least-squares regularized by nuclear norm $\left(\|X\|_{*}=\|\sigma(X)\|_{1}\right)$

$$
\min _{X \in \mathbb{R}^{d}=m \times m} \frac{1}{2}\|A(X)-y\|^{2}+\lambda\|X\|_{*}
$$

Generate many random problems (with $m=20$ and $n=300$), solve them
Select those with $\operatorname{rank}\left(X^{\star}\right)=4$ and $\delta=0$ or $3 \quad\left(\delta=\#\left\{i:\left|\sigma_{i}\left(U^{\star}\right)\right|=1\right\}-\operatorname{rank}\left(X^{\star}\right)\right)$
Plot the decrease of $\operatorname{rank}\left(X_{k}\right)$ with $\left.X_{k+1}=\operatorname{prox}_{\gamma\|\cdot\|_{*}}\left(X_{k}-\gamma A^{*}\left(A\left(X_{k}\right)-y\right)\right)\right)$

Illustration with nuclear norm
Matrix least-squares regularized by nuclear norm $\left(\|X\|_{*}=\|\sigma(X)\|_{1}\right)$

$$
\min _{X \in \mathbb{R}^{d=m \times m}} \frac{1}{2}\|A(X)-y\|^{2}+\lambda\|X\|_{*}
$$

Generate many random problems (with $m=20$ and $n=300$), solve them
Select those with $\operatorname{rank}\left(X^{\star}\right)=4$ and $\delta=0$ or $3 \quad\left(\delta=\#\left\{i:\left|\sigma_{i}\left(U^{\star}\right)\right|=1\right\}-\operatorname{rank}\left(X^{\star}\right)\right)$
Plot the decrease of $\operatorname{rank}\left(X_{k}\right)$ with $\left.X_{k+1}=\operatorname{prox}_{\gamma\|\cdot\|_{*}}\left(X_{k}-\gamma A^{*}\left(A\left(X_{k}\right)-y\right)\right)\right)$

Nonsmoothness attracts (proximal) algorithms

Outline

(1) Introduction: nonsmoothness provides recovery, stability, identification
(2) Stability of mirror-stratifiable regularizers

3 Identification of proximal algorithms
(4) Application: communication-efficient distributed learning
(5) Application: model consistency in supervised learning

Machine learning in a nutschell

Supervised learning set-up

- Data $\left(a_{j}, y_{j}\right)_{j=1, \ldots, n}$, prediction $h(\cdot, x)$, model parameters $x \in \mathbb{R}^{d}$
- (Regularized) empirical risk minimization (learning is optimizing !)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{j=1}^{n} \ell\left(y_{j}, h\left(a_{j}, x\right)\right) \quad(+\lambda R(x))
$$

Machine learning in a nutschell
Supervised learning set-up

- Data $\left(a_{j}, y_{j}\right)_{j=1, \ldots, n}$, prediction $h(\cdot, x)$, model parameters $x \in \mathbb{R}^{d}$
- (Regularized) empirical risk minimization (learning is optimizing !)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{j=1}^{n} \ell\left(y_{j}, h\left(a_{j}, x\right)\right) \quad(+\lambda R(x))
$$

(Standard) centralized learning

Machine learning in a nutschell
Supervised learning set-up

- Data $\left(a_{j}, y_{j}\right)_{j=1, \ldots, n}$, prediction $h(\cdot, x)$, model parameters $x \in \mathbb{R}^{d}$
- (Regularized) empirical risk minimization (learning is optimizing !)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{j=1}^{n} \ell\left(y_{j}, h\left(a_{j}, x\right)\right) \quad(+\lambda R(x))
$$

(Standard) centralized learning

Machine learning in a nutschell
Supervised learning set-up

- Data $\left(a_{j}, y_{j}\right)_{j=1, \ldots, n}$, prediction $h(\cdot, x)$, model parameters $x \in \mathbb{R}^{d}$
- (Regularized) empirical risk minimization (learning is optimizing !)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{j=1}^{n} \ell\left(y_{j}, h\left(a_{j}, x\right)\right) \quad(+\lambda R(x))
$$

(Standard) centralized learning

Machine learning in a nutschell
Supervised learning set-up

- Data $\left(a_{j}, y_{j}\right)_{j=1, \ldots, n}$, prediction $h(\cdot, x)$, model parameters $x \in \mathbb{R}^{d}$
- (Regularized) empirical risk minimization (learning is optimizing !)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{j=1}^{n} \ell\left(y_{j}, h\left(a_{j}, x\right)\right) \quad(+\lambda R(x))
$$

(Standard) centralized learning

- needs of lot of storage \because
- is highly privacy invasive \odot

Nonsmooth regularization for distributed learning
Distributed (or federative) set-up

Nonsmooth regularization for distributed learning
Distributed (or federative) set-up

Nonsmooth regularization for distributed learning
Distributed (or federative) set-up

Nonsmooth regularization for distributed learning
Distributed (or federative) set-up

Nonsmooth regularization for distributed learning
Distributed (or federative) set-up Communication is the bottleneck \odot

Nonsmooth regularization for distributed learning
Distributed (or federative) set-up Communication is the bottleneck \odot

Nonsmooth regularization for distributed learning
Distributed (or federative) set-up Communication is the bottleneck \odot

Nonsmooth regularization for distributed learning
Distributed (or federative) set-up Communication is the bottleneck $)$

- Observation: identification gives automatic model compression e.g. for $R=\|\cdot\|_{1}$, model becomes sparse... just communicate nonzero entries!

Nonsmooth regularization for distributed learning
Distributed (or federative) set-up Communication is the bottleneck \odot

- Observation: identification gives automatic model compression e.g. for $R=\|\cdot\|_{1}$, model becomes sparse... just communicate nonzero entries!
- [Grishchenko, lutzeler, M. '19] uses again identification for update comp.

Project update onto $M_{x_{k}}+$ randomly selected M
e.g. for $R=\|\cdot\|_{1}$, select current support + random entries

- Algo with intricate convergence analysis due to non-uniform selection...

Illustration of communication-efficient proximal method
On an instance of TV-regularized logistic regression (a1a dataset on 10 machines)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{j=1}^{n} \log \left(1+\exp \left(-y_{j}\left\langle a_{j}, x\right\rangle\right)+\lambda \operatorname{TV}(x) \quad \operatorname{TV}(x)=\sum_{i=1}^{\substack{\text { Total Variation } \\ n-1} x_{i+1}-x_{i} \mid}\right.
$$

Comparison of - Usual distributed proximal-gradient (black)

- Adaptive distributed proximal-subspace descent (red) for different selections $M_{x_{k}}+$ random others

Illustration of communication-efficient proximal method
On an instance of TV-regularized logistic regression (ala dataset on 10 machines)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{j=1}^{n} \log \left(1+\exp \left(-y_{j}\left\langle a_{j}, x\right\rangle\right)+\lambda \operatorname{TV}(x) \quad \operatorname{TV}(x)=\sum_{i=1}^{\substack{\text { Total Variation } \\ n-1} x_{i+1}-x_{i} \mid}\right.
$$

Comparison of • Usual distributed proximal-gradient (black)

- Adaptive distributed proximal-subspace descent (red) for different selections $M_{x_{k}}+$ random others

Acceleration... with respect to data-exchanged!

Illustration of communication-efficient proximal method
On an instance of TV-regularized logistic regression (a1a dataset on 10 machines)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{j=1}^{n} \log \left(1+\exp \left(-y_{j}\left\langle a_{j}, x\right\rangle\right)+\lambda \operatorname{TV}(x) \quad \operatorname{TV}(x)=\sum_{i=1}^{\substack{\text { Total Variation } \\ n-1} x_{i+1}-x_{i} \mid}\right.
$$

Comparison of • Usual distributed proximal-gradient (black)

- Adaptive distributed proximal-subspace descent (red) for different selections $M_{x_{k}}+$ random others

Acceleration... with respect to data-exchanged !
Tradeoff between compression (less comm.) and identification (faster cv)

Outline

(1) Introduction: nonsmoothness provides recovery, stability, identification
(2) Stability of mirror-stratifiable regularizers

3 Identification of proximal algorithms
(4) Application: communication-efficient distributed learning
(5) Application: model consistency in supervised learning

Supervised learning: model consistency ?

- Assume data $\left(a_{i}, y_{i}\right)_{i=1, \ldots, n}$ are sampled from linear model

$$
y=\left\langle a, x_{0}\right\rangle+w \quad \text { with random }(a, w) \text { (of unknown probability measure } \rho \text {) }
$$

- Structure assumption: x_{0} has a low-complexity for R

$$
x_{0}=\operatorname{argmin}_{x \in \mathbb{R}^{d}}\left\{R(x): x \in \operatorname{argmin}_{z \in \mathbb{R}^{d}} \mathbb{E}_{\rho}\left[(\langle a, z\rangle-y)^{2}\right]\right\}
$$

- Regularized least-squares (if $R=\|\cdot\|_{1}$, this is LASSO)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2 n} \sum_{i=1}^{n}\left(\left\langle a_{i}, x\right\rangle-y_{i}\right)^{2}+\lambda_{n} R(x)
$$

- Stochastic (proximal-)gradient algorithms (at iteration k, pick randomly $i(k)$)

$$
x_{k+1}=\operatorname{prox}_{\gamma_{k} \lambda_{n} R}\left(x_{k}-\gamma_{k}\left(\left(\left\langle a_{i(k)}, x_{k}\right\rangle-y_{i(k)}\right) a_{i(k)}+\varepsilon_{k}\right)\right)
$$

E.g. SGD, SAGA [Delfazio et al '14], SVRG [Xiao-Zhang '14]

Supervised learning: model consistency ?

- Assume data $\left(a_{i}, y_{i}\right)_{i=1, \ldots, n}$ are sampled from linear model

$$
y=\left\langle a, x_{0}\right\rangle+w \quad \text { with random }(a, w) \text { (of unknown probability measure } \rho \text {) }
$$

- Structure assumption: x_{0} has a low-complexity for R

$$
x_{0}=\operatorname{argmin}_{x \in \mathbb{R}^{d}}\left\{R(x): x \in \operatorname{argmin}_{z \in \mathbb{R}^{d}} \mathbb{E}_{\rho}\left[(\langle a, z\rangle-y)^{2}\right]\right\}
$$

- Regularized least-squares (if $R=\|\cdot\|_{1}$, this is LASSO)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2 n} \sum_{i=1}^{n}\left(\left\langle a_{i}, x\right\rangle-y_{i}\right)^{2}+\lambda_{n} R(x)
$$

- Stochastic (proximal-)gradient algorithms (at iteration k, pick randomly $i(k)$)

$$
x_{k+1}=\operatorname{prox}_{\gamma_{k} \lambda_{n} R}\left(x_{k}-\gamma_{k}\left(\left(\left\langle a_{i(k)}, x_{k}\right\rangle-y_{i(k)}\right) a_{i(k)}+\varepsilon_{k}\right)\right)
$$

E.g. SGD, SAGA [Delfazio et al '14], SVRG [Xiao-Zhang '14]

- Do we have model recovery/consistency i.e. $\quad x_{k} \in M_{x_{0}}$? (when number of observations $n \rightarrow+\infty$)

Enlarged identification of stochastic algorithms

Theorem (Garrigos, Fadili, M., Peyré '18)
Take $\lambda_{n} \rightarrow 0$ with $\lambda_{n} \sqrt{n /(\log \log n)} \rightarrow+\infty$. If n large enough and for

$$
x_{k+1}=\operatorname{prox}_{\gamma_{k} \lambda_{n} R}\left(x_{k}-\gamma_{k}\left(\left(\left\langle a_{i(k)}, x_{k}\right\rangle-y_{i(k)}\right) a_{i(k)}+\varepsilon_{k}\right)\right)
$$

with mild assumptions on errors ε_{k} and stepsizes γ_{k}. Then, for k large, a.s.

$$
\begin{gathered}
M_{x_{0}} \leqslant M_{x_{k}} \leqslant \mathcal{J}_{R^{*}}\left(M_{\eta_{0}}^{*}\right) \\
\text { with } \eta_{0}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\{\eta^{\top} C^{\dagger} \eta: \eta \in \partial R\left(w_{0}\right) \cap \operatorname{Im} C\right\} \quad \text { and } \quad C=\mathbb{E}_{\rho}\left[a a^{\top}\right]
\end{gathered}
$$

Comments:

- key dual object $\eta_{0} \in \partial R\left(x_{0}\right)$ [Vaiter et al '16]
- λ_{n} decreases to 0 , but not too fast
- SAGA and SVRG satisfy the "mild" assumption [Poon et al '18]
- (Prox-)SGD does not - and does not identify (e.g. [Lee Wright '12])

Enlarged identification of stochastic algorithms

Theorem (Garrigos, Fadili, M., Peyré '18)
Take $\lambda_{n} \rightarrow 0$ with $\lambda_{n} \sqrt{n /(\log \log n)} \rightarrow+\infty$. If n large enough and for

$$
x_{k+1}=\operatorname{prox}_{\gamma_{k} \lambda_{n} R}\left(x_{k}-\gamma_{k}\left(\left(\left\langle a_{i(k)}, x_{k}\right\rangle-y_{i(k)}\right) a_{i(k)}+\varepsilon_{k}\right)\right)
$$

with mild assumptions on errors ε_{k} and stepsizes γ_{k}. Then, for k large, a.s.

$$
\begin{gathered}
M_{x_{0}} \leqslant M_{x_{k}} \leqslant \mathcal{J}_{R^{*}}\left(M_{\eta_{0}}^{*}\right) \\
\text { with } \eta_{0}=\underset{\eta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\{\eta^{\top} C^{\dagger} \eta: \eta \in \partial R\left(w_{0}\right) \cap \operatorname{Im} C\right\} \quad \text { and } \quad C=\mathbb{E}_{\rho}\left[a a^{\top}\right]
\end{gathered}
$$

Comments:

- key dual object $\eta_{0} \in \partial R\left(x_{0}\right)$ [Vaiter et al '16]
- λ_{n} decreases to 0 , but not too fast
- SAGA and SVRG satisfy the "mild" assumption [Poon et al '18]
- (Prox-)SGD does not - and does not identify (e.g. [Lee Wright '12])

Conclusion, perspectives

Take-home message

- Nonsmooth regularizers are useful in models, in theory, and in practice
- Compressed communinations by adaptative dimension reduction
- Better understanding of optim. algos (beyond convergence)
- Enlarged localization results (explaining observed phenomena)

Extensions

- Many possible refinements of sensitivity results other data fidelity terms, a priori control on strata dimension, explaining transition curves...
- Use identification to accelerate convergence
interplay between identification and acceleration
- Subspace descent algorithms generalizing coordinate descent for nonseparable functions

Conclusion, perspectives

Take-home message

- Nonsmooth regularizers are useful in models, in theory, and in practice
- Compressed communinations by adaptative dimension reduction
- Better understanding of optim. algos (beyond convergence)
- Enlarged localization results (explaining observed phenomena)

Extensions

- Many possible refinements of sensitivity results other data fidelity terms, a priori control on strata dimension, explaining transition curves...
- Use identification to accelerate convergence
interplay between identification and acceleration
- Subspace descent algorithms generalizing coordinate descent for nonseparable functions

