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Energy Imports
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Motivating Application: European Natural Gas Network

Map created by ETH Zurich, 2014
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Why focus on (natural) gas?

Energy turnaround: away from nuclear (GER: early
2020ies) and fossil fuels (GER: around 2050) to re-
newables.

wordpress.com

Availability (still) of natural gas.

Transport, storage, distribution and conversion (Power
to Gas!).
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Mathematical Model of Gas Flow in a Pipe
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Trends in Fossil Fuel Prices

GNEPs for Gas Spot · September 20, 2019 · Page 6 (38)



Spot market with transport (of energy carriers)
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Outlook on Spot Market Model

� Producers and wholesalers are exchanging goods via a pipe/road in a non-cooperative

fashion

� Evolution w.r.t time and space of the goods is governed by a PDE, which is a shared

constraint

� Oligopoly case: wholesalers are price takers and they make decision at each point in time

� The remaining players in the game are the producers

� The coupling between players happens via the PDE and the objective functions
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Single pipe: Ω = (0,1); time horizon: T>0
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Agenda

� Abstract GNEPs in Banach space.

� Existence of solutions and equilibrium conditions.

� Nikaido-Isoda based path-following.

� Numerical results.

� Outlook on spot market model.
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A GNEP with Abstract Constraints

Aim of player i = 1, . . . , N : Given u−i, choose (ui, y) which solves:

min J1
i (y) + J2

i (ui) over (ui, y) ∈ Ui × Y
subject to (s.t.)

Ay = B(ui, u−i),

ui ∈ U iad,

y ∈ K.

(Pi)

Data assumptions

� Ui (i = 1, . . . , N ) reflexive separable Banach spaces, U := ΠN
i=1Ui.

� A : Y →W linear isomorphism; with Y,W reflexive B.-spaces.

� X B.-space with Y ↪→ X is continuous.

� If M ⊂ X∗ is bounded, then M weak-∗ relatively compact in X∗.

� B ∈ L(U,W ); Bu =
∑m
i=1Biui with Bi = B(·, 0−i) with Bi ∈ L(Ui,W ).

� A−1B : U → X is compact.
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Data Assumptions

� K ⊂ X nonempty, closed, and convex set.

� Norm topology on X : ∃ y0 ∈ K and ε > 0: Bε(y0) ⊂ K .

� U iad ⊂ Ui nonempty, bounded, closed, and convex; and Uad := ΠN
i=1U

i
ad.

� ∃ u ∈ Uad with A−1Bu ∈ K .

� J1
i : Y → R convex and completely continuous (if vk

Y
⇀ v, then J1

i (vk)→ J1
i (v)),

and J2
i : Ui → R strictly convex and continuous.
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Reduced form using solution operator S : U→ Y, Su := A−1(Bu):

minJi(ui, u−i) := J1
i (S(ui, u−i)) + J2

i (ui) over ui ∈ Ui
s.t.

ui ∈ U iad, S(ui, u−i) ∈ K.

For u ∈ U strategy ui feasible for ith problem,

given u−i, for all i = 1, . . . , N if and only if u ∈ C , where

C := {u ∈ Uad | Su ∈ K}.

Since C convex, problem structure of so-called jointly convex GNEP.

Definition (Generalized Nash Equilibrium)

ū ∈ C is Nash equilibrium provided

Ji(ūi, ū−i) ≤ Ji(vi, ū−i), ∀vi ∈ Ui : (vi, ū−i) ∈ C, ∀i = 1, . . . , N.
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Complexity

Major complications:

� Existence: Classical (Ky Fan/Kakutani) theorems not directly applicable.

(⇒ resort to weak topology).

� Equilibria: Generalized Nash vs. more tractable variational equilibria.

(⇒ consider variational equilibria).

� Numerical approach: Handling of state constraints.

(⇒ Moreau-Yosida regularization).

� Update of path parameter: Primal-dual path-following strategy.

(⇒ Nikaido-Isoda function).
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Literature

� Finite dimensions. Much work done for generalized Nash equilibrium problems

(GNEPs); see works by Facchinei, Kanzow, Pang, Fukushima, and many more.

� Infinite dimensions. Significantly less in function spaces: Desideri; Hoppe; Ramos,

Glowinski, & Periaux; Ramos & Roubicek; Kanzow, Karl, Steck, D. Wachsmuth; Borzì,...

Often: multi-objective – monotone VI, but not GNEP (!); in some cases NEP.
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First-order conditions for GNEPs

Optimality Conditions for Generalized Nash Equilibria

� If a Nash equilibrium ū ∈ U of (P) satisfies

∀i = 1, . . . , N, ∃ui ∈ U iad : Bε(0) ⊂ S(ui, ū−i)−K

for some ε > 0, then ∃ ȳ ∈ Y , p̄ ∈ (W ∗)N , λ̄ ∈ U∗ and µ̄ ∈ (X∗)N :

(OSi)



ȳ = Sū,

−p̄i ∈ A−∗
(
∂J1

i (ȳ) + µ̄i
)
,

λ̄i ∈ ∂IUi
ad

(ūi),

µ̄i ∈ ∂IK(ȳ),

0 ∈ ∂J2
i (ūi)−B∗i p̄i + λ̄i,

is fulfilled for i = 1, . . . , N . Coupled system is denoted by (OS).

� Conversely, if the tuple (ū, ȳ, p̄, λ̄, µ̄) ∈ U × Y × (W ∗)N × U∗ × (X∗)N satisfies

the coupled system (OS), then ū is a Nash equilibrium.
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Nikaido-Isoda Function

� Nikaido-Isoda function Ψ : U × U → R defined by

Ψ(u, v) :=

N∑
i=1

[Ji(ui, u−i)− Ji(vi, u−i)] .

� In addition, define V : C → R by

V (u) = max
v
{Ψ(u, v) | v ∈ U : (vi, u−i) ∈ C for i = 1, . . . , N}.

� Observation: For v = u we get V (u) ≥ Ψ(u, u) = 0 for u ∈ C .

A point ū ∈ U is a Nash equilibrium of (P) if and only if ū ∈ C and V (ū) = 0.
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Variational Equilibria

� Since (P) is a jointly-convex GNEP we can use the more restrictive solution concept of

variational equilibria ([Rosen ’65]).

� For NEPs, variational and Nash equilibria coincide (i.e., K = Y ).

� Define R̂ : C → C by

R̂(u) := argmax
v
{Ψ(u, v) | v ∈ C} = argmin

v

{∑N

i=1
Ji(vi, u−i) | v ∈ C

}
and V̂ : C → R by

V̂ (u) := Ψ(u, R̂(u)) = max
v
{Ψ(u, v) | v ∈ C} .

A point ū ∈ U is called a variational equilibrium of (P) if ū ∈ C and V̂ (ū) = 0.
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Variational Equilibria: Properties

Variational Equilibria are Nash Equilibria

Every variational equilibrium of (P) is also a Nash equilibrium of (P).

A point ū ∈ C is a variational equilibrium if and only if ū = R̂(ū).

Existence

The GNEP (P) admits a variational equilibrium ū ∈ U .

Proof uses Kakutani’s Fixed Point Theorem applied to weak topology (yields compactness of C

and upper semicontinuity of set-valued map R̂, which then has a fixed point).

⇒ (P) admits Nash equilibrium.
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Variational Equilibria: First-order conditions

Slater constraint qualification (weaker than previous CQ.)

0 ∈ int (S(Uad)−K) , interior taken in X.

First-order optimality conditions

Suppose Slater CQ satisfied. Then ū ∈ U is variational equilibrium of (P) if and only if ∃
ȳ ∈ Y , p̄ ∈ (W ∗)N , λ̄ ∈ U∗ and µ̄ ∈ X∗ such that

(̂OSi)



ȳ = Sū,

−p̄i ∈ A−∗
(
∂J1

i (ȳ) + µ̄
)
,

λ̄i ∈ ∂IUi
ad

(ūi),

µ̄ ∈ ∂IK(ȳ),

0 ∈ ∂J2
i (ūi)−B∗i p̄i + λ̄i,

is fulfilled for each i = 1, . . . , N . Coupled system referred to by (ÔS).
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Reducible Case

Structural assumption.

� J1
i = J1

0 + J̃1
i where J1

0 convex and continuously Gâteaux differentiable, and J̃1
i

linear-affine; w. l. o. g. we assume J̃1
i ∈ Y ∗.

Includes typical tracking-type functionals: J1
i (y) = 1

2
‖y − ydi ‖2Y . Since,

1

2
‖y − ydi ‖2L2 =

1

2
‖y‖2L2 − (y, yid)L2 +

1

2
||yid||2L2 .

Single objective PDE constrained optimization ( — potential game)

Under the above assumption there exists a unique variational equilibrium ū of (P), which is the

unique solution of the convex optimization problem

minimize Ĵ(u) := J1
0 (Su) +

N∑
i=1

(
J2
i (ui) + 〈S∗i J̃1

i , ui〉U∗
i ,Ui

)
over u ∈ U.

s.t. u ∈ C.
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Path-Following

Penalty function (e.g. L2-type Moreau-Yosida regularization of indicator of K).

� β : X → R+ is convex, continuous, and cont. Gâteaux-differentiable with kerβ = K ,

i.e., β(y) = 0 whenever y ∈ K , else β(y) > 0.

Consider
min J1

i (y) + J2
i (ui) + γβ(y) over (ui, y) ∈ Ui × Y

s.t.

Ay = B(ui, u−i), ui ∈ U iad.
(Pi,γ )

First-order conditions.

For all i = 1, . . . , N , uγ is a Nash equilibrium if and only if there exist yγ ∈ Y ,

pγ ∈ (W ∗)N , λγ ∈ U∗ and µγ ∈ X∗ such that

(OSi,γ)



yγ = Suγ ,

−pγi = A−∗
(
(J1
i )′(yγ) + µγ

)
,

λγi ∈ ∂IUi
ad

(uγi ),

µγ = γβ′(yγ),

0 = (J2
i )′(uγi )−B∗i pγi + λγi .
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Primal-Dual Path

For γ > 0, Sγ ⊆ U × Y × (W ∗)N × U∗ ×X∗ set of solutions of (OSγ).

C :=
{(

(uγ , yγ , pγ , λγ , µγ)
)
γ>0
| ∀γ > 0 : (uγ , yγ , pγ , λγ , µγ) ∈ Sγ

}
.

We call every element C =
(
(uγ , yγ , pγ , λγ , µγ)

)
γ>0
∈ C a primal-dual path.

Uniform Boundedness

Let (P) fulfill Slater CQ. Then ∃ 0 < ρ <∞ such that for all γ > 0:

‖uγ‖U + ‖yγ‖Y + ‖pγ‖(W∗)N + ‖λγ‖U∗ + ‖µγ‖X∗ ≤ ρ.

Path convergence

Let (P) fulfill Slater CQ. Then for every primal-dual path C ∈ C ∃ γn →∞:

uγn
U
⇀ u∗, yγn

Y
⇀ y∗, pγn

(W∗)N
⇀ p∗, λγn

U∗
⇀ λ∗, µγn

X∗

⇀∗ µ∗.

Moreover, the point (u∗, y∗, p∗, λ∗, µ∗) fulfills the first order optimality conditions (ÔS), in

particular u∗ is a variational equilibrium of (P).
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Path-Following

� For any γ > 0 let Ψγ : U × U → R be the Nikaido-Isoda function for (Pγ ), i.e.

Ψγ(u, v) :=
N∑
i=1

[J γi (ui, u−i)− J γi (vi, u−i)] ,

where J γi (u) := J1
i (Su) + J2

i (u) + γβ(Su) represents the objective of (Pi,γ ), and

� consider V : U × R+ → R defined by

V (u, γ) := max
v∈Uad

Ψγ(u, v) =
N∑
i=1

J γi (ui, u−i)− min
v∈Uad

N∑
i=1

J γi (vi, u−i).

� One observes that V (u, γ) ≥ 0 for all u ∈ Uad and analogously to before:

V (u, γ) = 0 if and only if u is an equilibrium.
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γ-Update Strategy.

Given NE uγ for γ, find γ+ > γ based on deviations of V (uγ , γ′) from zero.

� Let V(γ + η) := V (uγ , γ + η), η > 0, and assume the directional derivative V ′(γ, η)

exists.

� We observe V(γ + tη) = V(γ) + V ′(γ; tη) + o(t) = V ′(γ; tη) + o(t).

� Therefore, we can base either directly on V ′(γ; η) or an efficient approximation thereof.

Estimate of dir. deriv.

For any γ > 0, let uγ be the corresponding equilibrium and define

V(γ + η) := V (uγ , γ + η), η > 0. It holds that for all η > 0:

ηNβ(S(uγ)) ≥ lim sup
t↓0

t−1(V(γ+ tη)−V(γ)) ≥ lim inf
t↓0

t−1(V(γ+ tη)−V(γ)) ≥ 0.
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γ-Update Strategy.

� Redundancy: If β(S(uγ)) = 0, then there is no need to increase γ, as the current state

yγ is feasible.

� State constraint not redundant: Bound secants by a fixed threshold πpath > 0 and

choosing η > 0 such that

ηNβ(S(uγ)) ≤ πpath.

For example:

η =
πpath

Nβ(S(uγ))

and then use the update γ := γ + η.

Solvers.

� Reducible case. Semi-smooth Newton method (mesh independent).

� General case. Projected gradient-type method (subproblem SSN – mesh independent)
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Spot Market Model — 1+2 Agents, Single Arc

Viscosity regularized transport model (velocity v ∈ R, ε > 0).

yt(x, t) + vyx(x, t)− εyxx(x, t) = 0, a.e. Q := (0, 1)× (0, T ),

y(0, t) = u0(t), a.e. t ∈ (0, T ),

y(1, t) =
N∑
i=0

u1
i (t), a.e. t ∈ (0, T ),

y(x, 0) = y0(x), a.e. x ∈ (0, 1).

� Otherwise (constraints, objectives) the GNEP is as described in the introductory part of

this presentation.
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Spot Market Model

Parameter settings.

Randomized, asymmetric misfit costs µj ; periodic demands.

γ-updates.
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Spot Market Model

State in space-time.
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Spot Market Model

Behavior of control as a function of γ.

Observations.

� Wholesaler/Producer attempts to behave strategically by producing more of the product

than is needed in periods of low-demand.

� Proj. grad. its.: For γ ∈ (100, 150) an average of 4 iterations needed, for

γ ∈ (150, 625) an average of 15, for γ ∈ (625, 2300) between 29 and 45 inner

iterations, for γ ∈ (2300, 5000) roughly 54, etc.
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Outlook on Spot Market Model

Oligopoly GNEP: wholesalers/consumers are price-takers.

Suppose market always clears (i.e.,
∑
i si =

∑
j dj ), si supply and dj demand, and a

wholesalers’ behavior is as follows: given a price π(t), demand of consumer j solves

max
dj(t)

vj(t, dj(t))− π(t)dj(t),

where vj is a strongly concave function. Hence,

∂vj(t, dj(t))

∂dj(t)
= π(t) for all t ∈ [0, T ].

� Classical approach in economy relies on implicit function theorem to derive total demand

d :=
∑
dj as a function of price π.

� This relation is then inverted to obtain the inverse demand function P : (t, d) 7→ π,

which is supposed to satisfy:

∂P (t, d)

∂d
< 0 and d(t)

∂P (t, d)

∂d
+
∂2P (t, d)

∂d2
≤ 0 a.e (0, T ). (1)
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Jointly convex GNEP with affine inverse demand function

Let U := L2([0, T ]). Each producer’s behavior is modeled by:

max
(u

p
i ,u

w
i )∈U2

∫ T

0

(P (t, uw(t))uwi (t)− Ci (upi (t))) dt

such that 0 ≤ upi (t) ≤ ū
p
i , u

p(t) ≤ ȳ, uw(t) ≤ ȳ a.e. on (0, T ),

y := S(up, uw) solution to (linear parabolic) PDE,

0 ≤ y(up, uw) ≤ ȳ a.e. on (0, T )× (0, 1),∫ T

0

(uwi (t)− upi (t)) dt ≤ 0.

Here P (t, u) := −a(t)u(t) + b(t), ā ≥ a(t) > 0 and b ∈ L∞([0, T ]), with up :=
∑
upi ,

and uw :=
∑
uwi .

� Difficulty: Coupling terms uwi
∑
j u

w
j when studying the best response map (i.e.,

optimal value function) of each player.
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Existence result: potential game case

All N producers share the same cost functional and upper bound ūpi = N−1ūp. In this case,

a solution to the variational equilibrium can be obtained from

max
(u

p
P
,uw

P
,y)∈U2×Y

∫ T

0

P (uwP )uwPdt− κ

2N
‖upP ‖

2
U

s.t. 0 ≤ upP (t) ≤ ūp, upP (t) ≤ ȳ, uwP (t) ≤ ȳ a.e on (0, T ),

(y, upP , u
w
P ) solution to PDE,

0 ≤ y(t, x) ≤ ȳ a.e on (0, T )× (0, 1),∫ T

0

uwP (t)dt ≤
∫ T

0

upP (t)dt.

Suppose that uP is a solution, then a solution to the variational equilibrium is recovered by

setting

upi = N−1upP and uwi = N−1uwP

for each producer.
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Existence result: Ky Fan’s inequality approach

Suppose that K is a closed bounded subset of a Banach space X and φ : X ×X → R
satisfying

� ∀η ∈ K, θ 7→ φ(θ, η) is weakly lower semicontinuous;

� ∀θ ∈ K, η 7→ φ(θ, η) is concave;

� ∀η ∈ K,φ(η, η) ≤ 0.

Then ∃θ̄ ∈ K such that φ(θ̄, η) ≤ 0 ∀η ∈ K .

One can use this result to show existence of a solution to

� the VI associated with the variational equilibrium [Théra 1991];

� a point ū such that Ψ(ū) = 0, by applying Ky Fan’s inequality to the Nikaido-Isoda

functional Ψ.
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Summary

� Motivating application: Spot markets.

� Abstract GNEPs

◦ Uniform Slater CQ, Slater CQ;

◦ Ky Fan with weak topology;

◦ Moreau-Yosida regularization of state constraint;

◦ SNEP — Sequential NEP approach.

� Nikaido-Isoda-based primal-dual path following.

� Outlook on enriched spot market model with gas transport.

https://spp1962.wias-berlin.de https://trr154.fau.de
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