

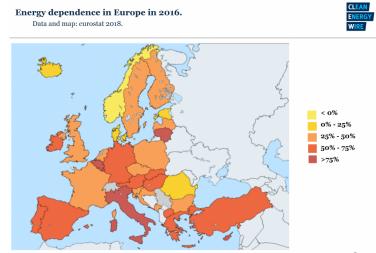
Weierstrass Institute for Applied Analysis and Stochastics

Generalized Nash Equilibrium Problems with Applications to Spot Markets with Gas Transport

Michael Hintermüller

joint work with V. Grimm, O. Huber, T. M. Surowiec, A. Kämmler, L. Schewe, M. Schmidt, G. Zöttl

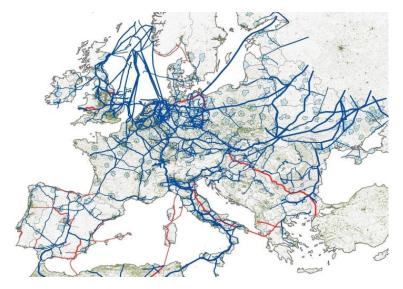
Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de September 20, 2019



🞯 BY SA 4.0

GNEPs for Gas Spot - September 20, 2019 - Page 2 (38)

Motivating Application: European Natural Gas Network

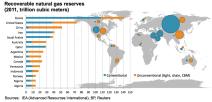


Map created by ETH Zurich, 2014

GNEPs for Gas Spot - September 20, 2019 - Page 3 (38)

Energy turnaround: away from nuclear (GER: early 2020ies) and fossil fuels (GER: around 2050) to renewables.

wordpress.com

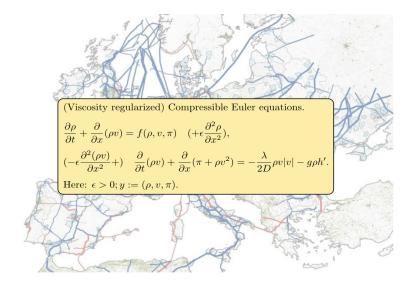


Availability (still) of natural gas.

Transport, storage, distribution and conversion (Power to Gas!).

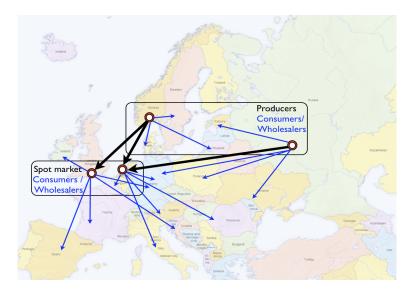


GNEPs for Gas Spot · September 20, 2019 · Page 4 (38)

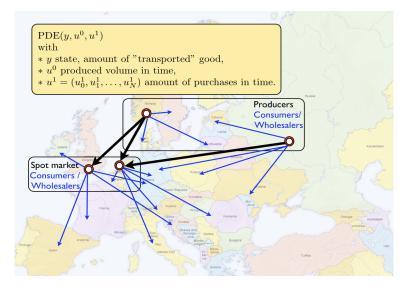


Price in USD per million BTU 25 20 Brent oil WTI oil 15 10 EEX natural gas Germany Henry Hub 5 natural gas USA 0 2006 2007 2008 2009 2010 2011 2012 2013 2014 12 months trailling average 20% 0% -20% -40% -60% EEX vs. Brent -80% Henry Hub vs. WTI -100% 2006 2007 2008 2009 2010 2011 2012 2013 2014 Data: Nomura Research: Aerius

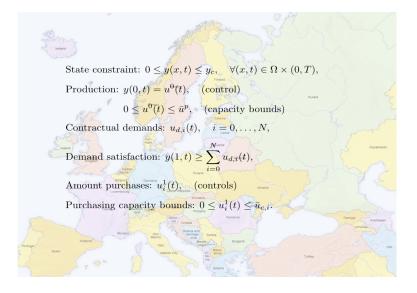
Price Trend of Fossil Fuel in USA and Europe

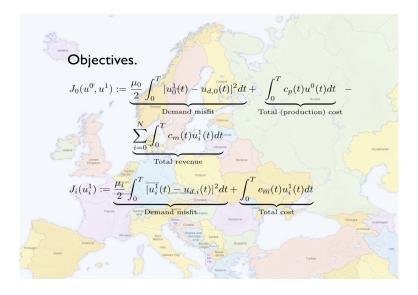


- Producers and wholesalers are exchanging goods via a pipe/road in a non-cooperative fashion
- Evolution w.r.t time and space of the goods is governed by a PDE, which is a shared constraint
- Oligopoly case: wholesalers are price takers and they make decision at each point in time
- The remaining players in the game are the producers
- The coupling between players happens via the PDE and the objective functions



GNEPs for Gas Spot · September 20, 2019 · Page 9 (38)





GNEPs for Gas Spot · September 20, 2019 · Page 11 (38)

General Nash Equilibrium Problem - GNEP

Producer's problem.

minimize $J_0(u^0, u^1)$ over (u^0, u^1) subject to $PDE(y, u^0, u^1)$ + state constraints $0 \le u^1_0 \le \bar{u}_{c,0}, \quad 0 \le u^0 \le \bar{u}_p.$

i-th consumer's problem (i=1,...,N).

minimize $J_i(u_i^1)$ over u_i^1 subject to $PDE(y, u^0, u^1)$ + state constraints $0 \le u_i^1 \le \bar{u}_{c,i}.$

*Possible multiplicity of solutions coming from the shared constraints motivates the restriction to Variational Equilibrium (VE).

*Meaningful economical interpretations in the VE case.

WIS

Agenda

Abstract GNEPs in Banach space.

- Existence of solutions and equilibrium conditions.
- Nikaido-Isoda based path-following.
 - Numerical results.
- Outlook on spot market model.

A GNEP with Abstract Constraints

Aim of player i = 1, ..., N: Given u_{-i} , choose (u_i, y) which solves:

$$\begin{array}{ll} \min J_i^1(\boldsymbol{y}) + J_i^2(u_i) \text{ over } (u_i, \boldsymbol{y}) \in U_i \times Y \\ \text{subject to (s.t.)} \\ & A \boldsymbol{y} &= B(u_i, u_{-i}), \\ & u_i &\in U_{\mathrm{ad}}^i, \\ & \boldsymbol{y} &\in K. \end{array}$$

Data assumptions

- \blacksquare U_i (i = 1, ..., N) reflexive separable Banach spaces, $U := \prod_{i=1}^N U_i$.
- $A: Y \to W$ linear isomorphism; with Y, W reflexive B.-spaces.
- **Z** B.-space with $Y \hookrightarrow X$ is continuous.
- If $M \subset X^*$ is bounded, then M weak-* relatively compact in X^* .

$$\blacksquare B \in \mathcal{L}(U, W); Bu = \sum_{i=1}^{m} B_i u_i \text{ with } B_i = B(\cdot, 0_{-i}) \text{ with } B_i \in \mathcal{L}(U_i, W).$$

• $A^{-1}B: U \to X$ is compact.

- $\blacksquare \ K \subset X \text{ nonempty, closed, and convex set.}$
- Norm topology on $X: \exists y_0 \in K$ and $\varepsilon > 0: \mathbb{B}_{\varepsilon}(y_0) \subset K$.

 $\blacksquare U_{\rm ad}^i \subset U_i \text{ nonempty, bounded, closed, and convex; and } U_{\rm ad} := \Pi_{i=1}^N U_{\rm ad}^i.$

- $\exists u \in U_{\mathrm{ad}} \text{ with } A^{-1}Bu \in K.$
- $J_i^1: Y \to \mathbb{R}$ convex and completely continuous (if $v_k \xrightarrow{Y} v$, then $J_i^1(v_k) \to J_i^1(v)$), and $J_i^2: U_i \to \mathbb{R}$ strictly convex and continuous.

Reduced form using solution operator $S : U \to Y$, $Su := A^{-1}(Bu)$:

$$\begin{split} \min \mathcal{J}_i(u_i, u_{-i}) &:= J_i^1(S(u_i, u_{-i})) + J_i^2(u_i) \text{ over } u_i \in U_i \\ \text{s.t.} \\ u_i \in U_{\text{ad}}^i, \quad S(u_i, u_{-i}) \in K. \end{split}$$

For $u \in U$ strategy u_i feasible for *i*th problem,

given u_{-i} , for all $i = 1, \ldots, N$ if and only if $u \in C$, where

 $C := \{ u \in U_{\mathrm{ad}} \mid Su \in K \}.$

Since C convex, problem structure of so-called jointly convex GNEP.

Definition (Generalized Nash Equilibrium)

 $\bar{u} \in C$ is Nash equilibrium provided

 $\mathcal{J}_i(\bar{u}_i, \bar{u}_{-i}) \leq \mathcal{J}_i(v_i, \bar{u}_{-i}), \ \forall v_i \in U_i : (v_i, \bar{u}_{-i}) \in C, \ \forall i = 1, \dots, N.$

GNEPs for Gas Spot · September 20, 2019 · Page 16 (38)

Major complications:

■ Existence: Classical (Ky Fan/Kakutani) theorems not directly applicable. (⇒ resort to weak topology).

Equilibria: Generalized Nash vs. more tractable variational equilibria.
 (⇒ consider variational equilibria).

Numerical approach: Handling of state constraints.

 $(\Rightarrow$ Moreau-Yosida regularization).

Update of path parameter: Primal-dual path-following strategy.

 $(\Rightarrow$ Nikaido-Isoda function).

Finite dimensions. Much work done for generalized Nash equilibrium problems (GNEPs); see works by Facchinei, Kanzow, Pang, Fukushima, and many more.

Infinite dimensions. Significantly less in function spaces: Desideri; Hoppe; Ramos, Glowinski, & Periaux; Ramos & Roubicek; Kanzow, Karl, Steck, D. Wachsmuth; Borzì,...
<u>Often</u>: multi-objective – monotone VI, but not GNEP (!); in some cases NEP.

Optimality Conditions for Generalized Nash Equilibria

If a Nash equilibrium $ar{u} \in U$ of (P) satisfies

 $\forall i = 1, \dots, N, \exists u_i \in U_{ad}^i : \mathbb{B}_{\varepsilon}(0) \subset S(u_i, \bar{u}_{-i}) - K$

for some $\varepsilon > 0$, then $\exists \ \bar{y} \in Y, \ \bar{p} \in (W^*)^N, \ \bar{\lambda} \in U^*$ and $\bar{\mu} \in (X^*)^N$:

$$(OS_i) \begin{cases} \bar{y} = S\bar{u}, \\ -\bar{p}_i \in A^{-*}(\partial J_i^1(\bar{y}) + \bar{\mu}_i), \\ \bar{\lambda}_i \in \partial I_{U_{ad}^i}(\bar{u}_i), \\ \bar{\mu}_i \in \partial I_K(\bar{y}), \\ 0 \in \partial J_i^2(\bar{u}_i) - B_i^*\bar{p}_i + \bar{\lambda}_i \end{cases}$$

is fulfilled for $i = 1, \ldots, N$. Coupled system is denoted by (OS).

Conversely, if the tuple $(\bar{u}, \bar{y}, \bar{p}, \bar{\lambda}, \bar{\mu}) \in U \times Y \times (W^*)^N \times U^* \times (X^*)^N$ satisfies the coupled system (OS), then \bar{u} is a Nash equilibrium.

Nikaido-Isoda function $\Psi: U \times U \to \mathbb{R}$ defined by

$$\Psi(u,v) := \sum_{i=1}^{N} \left[\mathcal{J}_i(u_i, u_{-i}) - \mathcal{J}_i(v_i, u_{-i}) \right].$$

 $\blacksquare~$ In addition, define $V:C\rightarrow \mathbb{R}$ by

$$V(u) = \max_{v} \{ \Psi(u, v) \mid v \in U : (v_i, u_{-i}) \in C \text{ for } i = 1, \dots, N \}.$$

Observation: For v = u we get $V(u) \ge \Psi(u, u) = 0$ for $u \in C$.

A point $\bar{u} \in U$ is a Nash equilibrium of (P) if and only if $\bar{u} \in C$ and $V(\bar{u}) = 0$.

- Since (P) is a jointly-convex GNEP we can use the more restrictive solution concept of variational equilibria ([Rosen '65]).
- For **NEPs**, variational and Nash equilibria coincide (i.e., K = Y). Define $\widehat{\mathcal{R}} : C \to C$ by

$$\begin{split} \widehat{\mathcal{R}}(u) &:= \operatorname*{argmax}_{v} \left\{ \Psi(u,v) \mid v \in C \right\} = \operatorname*{argmin}_{v} \left\{ \sum_{i=1}^{N} \mathcal{J}_{i}(v_{i},u_{-i}) \mid v \in C \right\} \\ \text{and } \widehat{V} : C \to \mathbb{R} \text{ by} \end{split}$$

$$\widehat{V}(u) := \Psi(u, \widehat{\mathcal{R}}(u)) = \max_{v} \left\{ \Psi(u, v) \mid v \in C \right\}.$$

A point $\bar{u} \in U$ is called a variational equilibrium of (P) if $\bar{u} \in C$ and $\hat{V}(\bar{u}) = 0$.

Variational Equilibria are Nash Equilibria

Every variational equilibrium of (P) is also a Nash equilibrium of (P).

A point $\bar{u} \in C$ is a variational equilibrium if and only if $\bar{u} = \hat{\mathcal{R}}(\bar{u})$.

Existence

The GNEP (P) admits a variational equilibrium $\bar{u} \in U$.

Proof uses Kakutani's Fixed Point Theorem applied to weak topology (yields compactness of C and upper semicontinuity of set-valued map $\widehat{\mathcal{R}}$, which then has a fixed point).

 \Rightarrow (P) admits Nash equilibrium.

Slater constraint qualification (weaker than previous CQ.)

$$0 \in \operatorname{int} \left(S(U_{\operatorname{ad}}) - K \right)$$
, interior taken in X.

First-order optimality conditions

Suppose Slater CQ satisfied. Then $\bar{u} \in U$ is variational equilibrium of (P) if and only if $\exists \ \bar{y} \in Y, \bar{p} \in (W^*)^N, \bar{\lambda} \in U^*$ and $\bar{\mu} \in X^*$ such that

$$\widehat{(OS_i)} \begin{cases}
\bar{y} = S\bar{u}, \\
-\bar{p}_i \in A^{-*} (\partial J_i^1(\bar{y}) + \bar{\mu}), \\
\bar{\lambda}_i \in \partial I_{U_{ad}^i}(\bar{u}_i), \\
\bar{\mu} \in \partial I_K(\bar{y}), \\
0 \in \partial J_i^2(\bar{u}_i) - B_i^* \bar{p}_i + \bar{\lambda}_i
\end{cases}$$

is fulfilled for each $i = 1, \ldots, N$. Coupled system referred to by (\widehat{OS}) .

GNEPs for Gas Spot · September 20, 2019 · Page 23 (38)

Structural assumption.

■ $J_i^1 = J_0^1 + \tilde{J}_i^1$ where J_0^1 convex and continuously Gâteaux differentiable, and \tilde{J}_i^1 linear-affine; w. I. o. g. we assume $\tilde{J}_i^1 \in Y^*$.

Includes typical tracking-type functionals: $J_i^1(y) = \frac{1}{2} \|y - y_i^d\|_Y^2$. Since,

$$\frac{1}{2}\|y - y_i^d\|_{L^2}^2 = \frac{1}{2}\|y\|_{L^2}^2 - (y, y_d^i)_{L^2} + \frac{1}{2}\|y_d^i\|_{L^2}^2.$$

Single objective PDE constrained optimization (- potential game)

Under the above assumption there exists a unique variational equilibrium \bar{u} of (P), which is the unique solution of the convex optimization problem

$$\begin{split} \text{minimize } \widehat{J}(u) &:= J_0^1(Su) + \sum_{i=1}^N \left(J_i^2(u_i) + \langle S_i^* \widetilde{J}_i^1, u_i \rangle_{U_i^*, U_i} \right) \text{ over } u \in U. \\ \text{s.t. } u \in C. \end{split}$$

Penalty function (e.g. L^2 -type Moreau-Yosida regularization of indicator of K).

 $\beta : X \to \mathbb{R}_+$ is convex, continuous, and cont. Gâteaux-differentiable with ker $\beta = K$, i.e., $\beta(y) = 0$ whenever $y \in K$, else $\beta(y) > 0$.

Consider

$$\begin{split} \min J_i^1(y) + J_i^2(u_i) + \gamma \beta(y) \text{ over } (u_i, y) \in U_i \times Y \\ \text{s.t.} \\ Ay &= B(u_i, u_{-i}), \quad u_i \in U_{\mathrm{ad}}^i. \end{split}$$

First-order conditions.

1

For all i = 1, ..., N, u^{γ} is a Nash equilibrium if and only if there exist $y^{\gamma} \in Y$, $p^{\gamma} \in (W^*)^N, \lambda^{\gamma} \in U^*$ and $\mu^{\gamma} \in X^*$ such that

$$(OS_{i,\gamma}) \begin{cases} y^{\gamma} = Su^{\gamma}, \\ -p_i^{\gamma} = A^{-*}((J_i^1)'(y^{\gamma}) + \mu^{\gamma}), \\ \lambda_i^{\gamma} \in \partial I_{U_{ad}^i}(u_i^{\gamma}), \\ \mu^{\gamma} = \gamma \beta'(y^{\gamma}), \\ 0 = (J_i^2)'(u_i^{\gamma}) - B_i^* p_i^{\gamma} + \lambda_i^{\gamma}. \end{cases}$$

For
$$\gamma > 0, S_{\gamma} \subseteq U \times Y \times (W^*)^N \times U^* \times X^*$$
 set of solutions of (OS_{γ}) .

$$\mathbf{C} := \left\{ \left((u^{\gamma}, y^{\gamma}, p^{\gamma}, \lambda^{\gamma}, \mu^{\gamma}) \right)_{\gamma > 0} \mid \forall \gamma > 0 : (u^{\gamma}, y^{\gamma}, p^{\gamma}, \lambda^{\gamma}, \mu^{\gamma}) \in S_{\gamma} \right\}.$$

We call every element $\mathcal{C} = \left((u^{\gamma}, y^{\gamma}, p^{\gamma}, \lambda^{\gamma}, \mu^{\gamma}) \right)_{\gamma > 0} \in \mathbf{C}$ a primal-dual path.

Uniform Boundedness

Let (P) fulfill Slater CQ. Then $\exists \ 0 < \rho < \infty$ such that for all $\gamma > 0$:

$$\|u^{\gamma}\|_{U} + \|y^{\gamma}\|_{Y} + \|p^{\gamma}\|_{(W^{*})^{N}} + \|\lambda^{\gamma}\|_{U^{*}} + \|\mu^{\gamma}\|_{X^{*}} \le \rho.$$

Path convergence

Let (P) fulfill Slater CQ. Then for every primal-dual path $\mathcal{C} \in \mathbf{C} \exists \gamma_n \to \infty$:

$$u^{\gamma_n} \stackrel{U}{\rightharpoonup} u^*, \ y^{\gamma_n} \stackrel{Y}{\rightharpoonup} y^*, \ p^{\gamma_n} \stackrel{(W^*)^N}{\rightharpoonup} p^*, \ \lambda^{\gamma_n} \stackrel{U^*}{\rightharpoonup} \lambda^*, \ \mu^{\gamma_n} \stackrel{X^*}{\rightharpoonup} \mu^*.$$

Moreover, the point $(u^*, y^*, p^*, \lambda^*, \mu^*)$ fulfills the first order optimality conditions (\widehat{OS}) , in particular u^* is a variational equilibrium of (P).

Path-Following

For any $\gamma > 0$ let $\Psi_{\gamma} : U \times U \to \mathbb{R}$ be the Nikaido-Isoda function for (P_{γ}), i.e.

$$\Psi_{\gamma}(u,v) := \sum_{i=1}^{N} \left[\mathcal{J}_i^{\gamma}(u_i, u_{-i}) - \mathcal{J}_i^{\gamma}(v_i, u_{-i}) \right],$$

where $\mathcal{J}_i^\gamma(u):=J_i^1(Su)+J_i^2(u)+\gamma\beta(Su)$ represents the objective of (P_{i,\gamma}), and

• consider $V: U \times \mathbb{R}_+ \to \mathbb{R}$ defined by

$$V(u,\gamma) := \max_{v \in U_{\mathrm{ad}}} \Psi_{\gamma}(u,v) = \sum_{i=1}^{N} \mathcal{J}_{i}^{\gamma}(u_{i},u_{-i}) - \min_{v \in U_{\mathrm{ad}}} \sum_{i=1}^{N} \mathcal{J}_{i}^{\gamma}(v_{i},u_{-i}).$$

One observes that $V(u, \gamma) \ge 0$ for all $u \in U_{ad}$ and analogously to before:

 $V(u, \gamma) = 0$ if and only if u is an equilibrium.

Given NE u^{γ} for γ , find $\gamma_{+} > \gamma$ based on deviations of $V(u^{\gamma}, \gamma')$ from zero.

- Let $\mathcal{V}(\gamma + \eta) := V(u^{\gamma}, \gamma + \eta), \eta > 0$, and assume the directional derivative $\mathcal{V}'(\gamma, \eta)$ exists.
- $\blacksquare \text{ We observe } \mathcal{V}(\gamma + t\eta) = \mathcal{V}(\gamma) + \mathcal{V}'(\gamma; t\eta) + o(t) = \mathcal{V}'(\gamma; t\eta) + o(t).$
 - Therefore, we can base either directly on $\mathcal{V}'(\gamma;\eta)$ or an efficient approximation thereof.

Estimate of dir. deriv.

For any $\gamma > 0$, let u^{γ} be the corresponding equilibrium and define $\mathcal{V}(\gamma + \eta) := V(u^{\gamma}, \gamma + \eta), \eta > 0$. It holds that for all $\eta > 0$:

 $\eta N\beta(S(u^{\gamma})) \geq \limsup_{t\downarrow 0} t^{-1}(\mathcal{V}(\gamma + t\eta) - \mathcal{V}(\gamma)) \geq \liminf_{t\downarrow 0} t^{-1}(\mathcal{V}(\gamma + t\eta) - \mathcal{V}(\gamma)) \geq 0.$

- **Redundancy**: If $\beta(S(u^{\gamma})) = 0$, then there is no need to increase γ , as the current state y^{γ} is feasible.
- State constraint not redundant: Bound secants by a fixed threshold $\pi_{path} > 0$ and choosing $\eta > 0$ such that

$$\eta N\beta(S(u^{\gamma})) \le \pi_{path}.$$

For example:

$$\eta = \frac{\pi_{path}}{N\beta(S(u^{\gamma}))}$$

and then use the update $\gamma := \gamma + \eta$.

Solvers.

- Reducible case. Semi-smooth Newton method (mesh independent).
- General case. Projected gradient-type method (subproblem SSN mesh independent)

Viscosity regularized transport model (velocity $v \in \mathbb{R}, \epsilon > 0$).

$$\begin{array}{rcl} y_t(x,t) + vy_x(x,t) & -\epsilon y_{xx}(x,t) & = & 0, & \text{a.e. } Q := (0,1) \times (0,T), \\ y(0,t) & = & u^0(t), & \text{a.e. } t \in (0,T), \\ y(1,t) & = & \sum_{i=0}^N u_i^1(t), & \text{a.e. } t \in (0,T), \\ y(x,0) & = & y_0(x), & \text{a.e. } x \in (0,1). \end{array}$$

Otherwise (constraints, objectives) the GNEP is as described in the introductory part of this presentation.

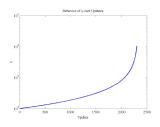
GNEPs for Gas Spot · September 20, 2019 · Page 30 (38)

Parameter settings.

h	au	tol	π_{path}	γ_0		ε	N	\bar{y}_c	\bar{u}_c	\bar{u}_p
1/256	1/20	0 1e-06	1e-05	1e+02	1	e+00	3	3	1	3
		Player	0	1		2				
		μ	65.2883	88.448	84	25.73	334			

Randomized, asymmetric misfit costs μ_j ; periodic demands.

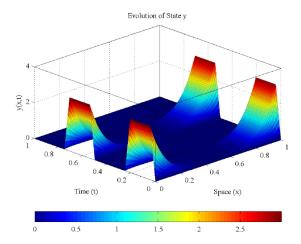
 γ -updates.



GNEPs for Gas Spot · September 20, 2019 · Page 31 (38)

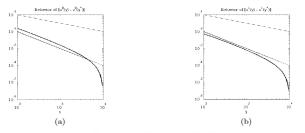
Spot Market Model

State in space-time.



GNEPs for Gas Spot · September 20, 2019 · Page 32 (38)

Behavior of control as a function of $\gamma.$



Convergence rates of u^0 and u^1 (bold) versus $\gamma^{-1/2}$ (dashed-dotted) and γ^{-1} (dotted)

Observations.

- Wholesaler/Producer attempts to behave strategically by producing more of the product than is needed in periods of low-demand.
- Proj. grad. its.: For $\gamma \in (100, 150)$ an average of 4 iterations needed, for $\gamma \in (150, 625)$ an average of 15, for $\gamma \in (625, 2300)$ between 29 and 45 inner iterations, for $\gamma \in (2300, 5000)$ roughly 54, etc.

Oligopoly GNEP: wholesalers/consumers are price-takers.

Suppose market always clears (i.e., $\sum_i s_i = \sum_j d_j$), s_i supply and d_j demand, and a wholesalers' behavior is as follows: given a price $\pi(t)$, demand of consumer j solves

$$\max_{d_j(t)} \quad v_j(t, d_j(t)) - \pi(t) d_j(t),$$

where v_i is a strongly concave function. Hence,

$$\frac{\partial v_j(t,d_j(t))}{\partial d_j(t)} = \pi(t) \quad \text{for all} \quad t \in [0,T].$$

- Classical approach in economy relies on implicit function theorem to derive total demand $d := \sum d_j$ as a function of price π .
- This relation is then inverted to obtain the **inverse demand function** $P: (t, d) \mapsto \pi$, which is supposed to satisfy:

$$\frac{\partial P(t,d)}{\partial d} < 0 \quad \text{and} \quad d(t)\frac{\partial P(t,d)}{\partial d} + \frac{\partial^2 P(t,d)}{\partial d^2} \le 0 \quad \text{a.e} \ (0,T). \tag{1}$$

Lnibriz

Let $U := L^2([0,T])$. Each producer's behavior is modeled by:

$$\begin{split} \max_{(u_i^p, u_i^w) \in U^2} & \int_0^T \left(P\left(t, u^w(t)\right) u_i^w(t) - C_i\left(u_i^p(t)\right) \right) \mathrm{d}t \\ \text{such that} & 0 \leq u_i^p(t) \leq \bar{u}_i^p, u^p(t) \leq \bar{y}, u^w(t) \leq \bar{y} \quad \text{a.e. on } (0, T), \\ & y := S(u^p, u^w) \text{ solution to (linear parabolic) PDE,} \\ & 0 \leq y(u^p, u^w) \leq \bar{y} \quad \text{ a.e. on } (0, T) \times (0, 1), \\ & \int_0^T \left(u_i^w(t) - u_i^p(t)\right) \mathrm{d}t \leq 0. \end{split}$$

Here P(t, u) := -a(t)u(t) + b(t), $\bar{a} \ge a(t) > 0$ and $b \in L^{\infty}([0,T])$, with $u^p := \sum u_i^p$, and $u^w := \sum u_i^w$.

Difficulty: Coupling terms $u_i^w \sum_j u_j^w$ when studying the best response map (i.e., optimal value function) of each player.

Existence result: potential game case

Lnibriz

All N producers share the same cost functional and upper bound $\bar{u}_i^p = N^{-1} \bar{u}^p$. In this case, a solution to the variational equilibrium can be obtained from

$$\begin{split} \max_{\substack{(u_P^p, u_P^w, y) \in U^2 \times Y \\ (u_P^p, u_P^w, y) \in U^2 \times Y }} & \int_0^T P(u_P^w) u_P^w dt - \frac{\kappa}{2N} \|u_P^p\|_U^2 \\ \text{s.t.} & 0 \leq u_P^p(t) \leq \bar{u}^p, u_P^w(t) \leq \bar{y}, u_P^w(t) \leq \bar{y} \text{ a.e on } (0, T), \\ & (y, u_P^p, u_P^w) \text{ solution to PDE}, \\ & 0 \leq y(t, x) \leq \bar{y} \quad \text{ a.e on } (0, T) \times (0, 1), \\ & \int_0^T u_P^w(t) dt \leq \int_0^T u_P^p(t) dt. \end{split}$$

Suppose that u_P is a solution, then a solution to the variational equilibrium is recovered by setting

$$u_i^p = N^{-1} u_P^p$$
 and $u_i^w = N^{-1} u_P^w$

for each producer.

Suppose that K is a closed bounded subset of a Banach space X and $\phi\colon X\times X\to \mathbb{R}$ satisfying

- $\label{eq:generalized_states} \P \ \forall \eta \in K, \theta \mapsto \phi(\theta, \eta) \text{ is weakly lower semicontinuous;}$
- $\label{eq:second} \quad \blacksquare \ \forall \theta \in K, \eta \mapsto \phi(\theta, \eta) \text{ is concave};$
- $\forall \eta \in K, \phi(\eta, \eta) \le 0.$
- Then $\exists \bar{\theta} \in K$ such that $\phi(\bar{\theta}, \eta) \leq 0 \quad \forall \eta \in K.$

One can use this result to show existence of a solution to

- the VI associated with the variational equilibrium [Théra 1991];
- **a** point \bar{u} such that $\Psi(\bar{u}) = 0$, by applying Ky Fan's inequality to the Nikaido-Isoda functional Ψ .

Summary

Libriz

Motivating application: Spot markets.

Abstract GNEPs

- Uniform Slater CQ, Slater CQ;
- Ky Fan with weak topology;
- Moreau-Yosida regularization of state constraint;
- SNEP Sequential NEP approach.
- Nikaido-Isoda-based primal-dual path following.
- Outlook on enriched spot market model with gas transport.

Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks

https://spp1962.wias-berlin.de https://trr154.fau.de

