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Second-Order Tangents (J.-P. Aubin, HF & 1990)
X - a normed vector space.
Adjacent tangent to K ⊂ X at x ∈ K is

TK (x) :=
{

u ∈ X | lim
ε→0+

dist(x + εu,K )
ε

= 0
}

Second-order tangent to K at x relative to u ∈ X

T (2)
K (x ; u) :=

{
v ∈ X | lim

ε→0+

dist(x + εu + ε2v ,K )
ε2 = 0

}

Clarke tangent cone to K ⊂ X at x ∈ K is

CK (x) := {u ∈ X | lim
y→K x , ε→0+

dist(y + εu,K )
ε

= 0}

T (2)
K (x ; u) + CK (x) = T (2)

K (x ; u) NK (x) := CK (x)−
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Example: Second-Order Tangents
Let x ∈ M = ∩r

i=0Mi , where for h ∈ C 2(Rn;Rs), gi ∈ C 2(Rn;R)

M0 = {y : h(y) = 0}, Mi = {y : gi (y) ≤ 0} ∀ i = 1, ..., r

and h′(x) is surjective. Assume that there exists u0 such that

h′(x)u0 = 0, 〈∇gi (x), u0〉 < 0 ∀ i ∈ Ia(x) = {i | gi (x) = 0}

(the Mangasarian-Fromowitz condition). Then

TM(x) = {u ∈ Rn : h′(x)u = 0, 〈∇gi (x), u〉 ≤ 0 ∀ i ∈ Ia(x)}

Moreover ∀ u ∈ TM(x), a vector v ∈ T (2)
M (x ; u) if and only if

∀ 1 ≤ j ≤ s, ∀ i ∈ I = {i ∈ Ia(x) | 〈∇gi (x), u〉 = 0}

〈∇hj(x), v〉+ 1
2〈h
′′
j (x)u, u〉 = 0, 〈∇gi (x), v〉+ 1

2〈g
′′
i (x)u, u〉 ≤ 0
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Standard Minimization Problem
φ : X → R, φ ∈ C 2, K ⊂ X .
Let x̄ ∈ K be a local minimizer of the problem

min
x∈K

φ(x)

What can be said when x̄ ∈ ∂K ? (boundary of K )

Primal first-order necessary condition (generalized Fermat rule) :

〈φ′(x̄), u〉 ≥ 0 ∀ u ∈ TK (x̄)

Define the cone of critical directions at x̄

C(x̄) = {u ∈ TK (x̄) | 〈φ′(x̄), u〉 = 0}

Primal second-order necessary condition:

〈φ′(x̄), v〉+ 1
2φ
′′(x̄)(u, u) ≥ 0 ∀ u ∈ C(x̄), ∀ v ∈ T (2)

K (x̄ ; u)
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Set-Valued Inverse Mapping Theorem (HF 1989)
Let (Z , d) be a complet metric space, Y be a Banach space with
the norm Gateaux differentiable (away from 0), G : Z → Y be
continuous. Define

G (1)(z) :=
{

v ∈ Y | lim inf
ε→0+

dist (G(z) + εv ,G(Bε(z))
ε

= 0
}

If ∃ ρ > 0 such that ∀ z near z̄ ,

ρB ⊂ co G (1)(z)

then G−1 is pseudo-Lipschitz:

dist(z ,G−1(y)) ≤ 1
ρ
|G(z)− y | ∀ (z , y) near (z̄ ,G(z̄))

Similar result is valid also when G is a set-valued map.
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Control System

{
x ′(t) = f (x(t), u(t)), u(t) ∈ U a.e. in [0, τ ]
x(0) = x0

f : Rn × Rm → Rn, x0 ∈ Rn, U ⊂ Rm

Controls are Lebesgue measurable functions u(·) : [0, τ ]→ U

A trajectory x(·) of control system is an absolutely continuous
function satisfying x(0) = x0 and for some control u(·)

x ′(t) = f (x(t), u(t)) almost everywhere in [0, τ ]

Denote by S ⊂ C([0, τ ];Rn) the set of all such trajectories.
We assume that f ∈ C 2, U is compact and ∃ k > 0 such that
maxu∈U |f (x , u)| ≤ k(|x |+ 1).
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System with the End-Point Equality Constraints
U := L1([0, τ ]; U) - is a metric space.
Let h = (h1, ..., hk) : Rn → Rk , h ∈ C 2, x0 ∈ Rn

(∗) x ′(t) = f (x(t), u(t)), x(0) = x0, u(t) ∈ U, h(x(τ)) = 0

Let ū ∈ U and the corresponding x̄(·) satisfies h(x̄(τ)) = 0.
Set [t] := (x̄(t), ū(t)) and consider the variational system{

y ′(t) = fx [t]y(t) + v(t), v(t) ∈ f (x̄(t),U)− f [t]
y(0) = 0

(1)

Its reachable set at time τ is

RL = {y(τ) : y(·) is a trajectory of (1)} ⊂ co G (1)(ū)

with G(u) = x(τ ; u), ∀ u ∈ U (trajectory corresponding to u).
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A Metric Regularity Result

Theorem

If 0 ∈ Int h ′(x̄(τ))(RL), then there exist ε > 0, C > 0 such that
for every trajectory-control pair (x , u) with ‖u − ū‖L1 < ε
we can find a trajectory-control pair (x̃ , ũ) satisfying

h(x̃(τ)) = 0, ‖ũ − u‖L1 ≤ C |h(x(τ))|

Consider the linearized control system at (x̄ , ū):

(L)
{

y ′(t) = fx [t]y(t) + fu[t]u(t), u(t) ∈ TU(ū(t))
y(0) = 0

Let (y , u) be a trajectory-control pair of (L). Then y ∈ TS(x̄).
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Second-Order Linearization

Assume

(B)
{
∃ δ0 > 0, ∃ c ∈ L1([0, τ ];R+) such that ∀ δ ∈ [0, δ0]
distU(ū(t) + δu(t)) ≤ c(t)δ2 for a.e. t ∈ [0, τ ].

Set ξ(t) = (y(t), u(t)) and consider the second-order linearization

(L2)


w ′(t) = fx [t]w(t) + fu[t]v(t) + 1

2 ξ(t)∗f ′′[t]ξ(t)
v(t) ∈ T (2)

U (ū(t); u(t)) a.e.
w(0) = 0

If (w , v) is a trajectory-control pair of (L2), then w ∈ T (2)
S (x̄ ; y).

Denote by R2 its reachable set at time τ .
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Second-Order Tangents to Trajectories of (∗)

Let (y , u) be a trajectory-control pair of (L) satisfying (B).

Corollary
Assume h′(x̄(τ))y(τ) = 0 and let w be a trajectory of (L2) such
that

hj
′(x̄(τ))w(τ) + 1

2 y(τ)∗hj
′′(x̄(τ))y(τ) = 0 ∀ j

Then w is in the second order tangent at (x̄ , y) to the set of
solutions to

(∗) x ′(t) = f (x(t), u(t)), x(0) = x0, u ∈ U , h(x(τ)) = 0
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Optimal Control with Mixed End-Point Constraints

Minimize ϕ(x(τ))

gi (x(τ)) ≤ 0, i = 1, . . . , r

hj(x(τ)) = 0, j = 1, . . . , k

x ′(t) = f (x(t), u(t)), x(0) = x0, u(t) ∈ U a.e. t,

where U is an arbitrary nonempty compact subset of Rm, x0 ∈ Rn

and gi : Rn → R, hj : Rn → R, f : Rn × Rm → Rn are C 2.
Any control u ∈ U such that the corresponding x satisfies
end-point constraints is admissible.

An admissible (x̄ , ū) is a weak local minimizer (in L1) if for some
ε > 0 we have ϕ(x(τ)) ≥ ϕ(x̄(τ)) for any admissible (x , u) such
that ‖u − ū‖L1 < ε.
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First Order Necessary Conditions
The Hamiltonian and the terminal Lagrange function are
defined by H(x , u, p) = 〈p, f (x , u)〉 and

`(x , λ, µ) = λ0ϕ(x) +
r∑

i=1
λi gi (x) +

k∑
j=1

µjhj(x),

Theorem If (x̄ , ū) is a weak local minimizer, then
∃µ = (µ1, ..., µk) ∈ Rk and λ = (λ0, . . . , λr ) ∈ Rr+1

+ , not all = 0,
satisfying λi gi (x̄(τ)) = 0 such that for the solution p of

−p′(t) = Hx (x̄(t), ū(t), p(t)) p(τ) = `x (x̄(τ), λ, µ)

we have

−Hu(x̄(t), ū(t), p(t)) ∈ NU(ū(t)) a.e. t

Denote by Λ(x̄ , ū) the set of all such (λ, µ, p) 6= 0.
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Strategy of Derivation of Second-Order Conditions
Take a critical solution (y , u) of (L) satisfying (B), i.e.
〈ϕ′(x̄(τ)), y(τ)〉 = 0 and y is tangent to constraints.

1. Consider the reachable set R2 of (L2) (it is convex) and
second-order tangent Q to the set defined by the end-point
equality constraints.
2. Let Q2 be the interior of the second-order tangent to the set
defined by the end-point inequality constraints.
3. Show that R2 ∩Q ∩Q2 ∩ L2 = ∅, where

L2 := {z |
〈
ϕ′(x̄(τ)), z

〉
+ 1

2 y(τ)∗ϕ′′(x̄(τ))y(τ)<0}

4. Apply a separation theorem.

Same strategy works for optimal control problems involving PDEs
and stochastic control systems.
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Critical Cone

C(x̄ , ū) is the set of all ξ = (y , u) solving (L), satisfying (B) with

ϕ′(x̄(τ))y(τ) = 0, h′(x̄(τ))y(τ) = 0, g ′i (x̄(τ))y(τ) ≤ 0 ∀ i ∈ Iactive

Let I := {i ∈ Iactive : 〈g ′i (x̄(τ)), y(τ)〉 = 0}.
For (λ, µ, p) ∈ Λ(x̄ , ū) and t ∈ [0, τ ], define [t] = (x̄(t), ū(t), p(t)),

Υ(u(t), p(t)) := inf
{
Hu[t]v : v ∈ T (2)

U (ū(t); u(t))
}

Ω(ξ, λ, µ, p) := y(τ)∗`xx (x̄(τ), λ, µ)y(τ) +
∫ τ

0
ξ(t)∗H′′[t]ξ(t)dt,

where H′′[t] is the Hessian of H(·, ·, p(t)) at (x̄(t), ū(t)).
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Second-Order Necessary Optimality Conditions

Theorem

Let (x̄ , ū) be a weak local minimizer and ξ = (y , u) ∈ C(x̄ , ū). If
0 ∈ Int h ′(x̄(τ))(RL) and ∃ v ∈ L∞([0, τ ];Rm) such that

v(t) ∈ T (2)
U (ū(t); u(t)) a.e.,

then for some (λ, µ, p) ∈ Λ(x̄ , ū) with λi = 0 for i /∈ I,
the function Υ(u(·), p(·)) is integrable and

1
2Ω(ξ, λ, µ, p) +

∫ τ

0
Υ(u(t), p(t))dt ≥ 0
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Proof: Variational Inequality and Separation Thm
For every i ∈ I define

Qi =
{
η ∈ Rn : g ′i (x̄(τ))η + 1

2 y(τ)∗g ′′i (x̄(τ))y(τ) < 0
}

Q = {ω ∈ Rn : h′j(x̄(τ))ω + 1
2 y(τ)∗h′′j (x̄(τ))y(τ) = 0 ∀ j}

L2 =
{
η ∈ Rn : ϕ′(x̄(τ))η + 1

2 y(τ)∗ϕ′′(x̄(τ))y(τ) < 0
}

Let I = {i1, ..., iγ}. Then for every w(τ) ∈ (∩i∈IQi ) ∩Q ∩R2, the
following variational inequality holds true:

ϕ′(x̄(τ))w(τ) + τ

2 y(τ)∗ϕ′′(x̄(τ))y(τ) ≥ 0.

Thus zero does not belong to the convex set{
(q0 − κ, qi1 − κ, ..., qiγ − κ, θ − κ) : κ ∈ R2,
θ ∈ Q, q0 ∈ L2, qij ∈ Qij , j = 1, ..., γ}.
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Stochastic Optimal Control Problem
Stochastic optimal control problem of the Mayer type:

Minimize E ϕ(x(τ))

over process-control pairs of the stochastic control system{
dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t)
x(0) = x0

with the end-points constraints

x0 ∈ K0, E g i (x(τ)) ≤ 0, ∀ i = 1, · · · , k, (2)

where W (·) is a d-dimensional Wiener process, τ > 0,
K0 is a closed subset of Rn , u(·) is the control variable,
x(·) solves the above system. ϕ : Rn × Ω→ R,
b : [0, τ ]× Rn × Rm × Ω→ Rn, g i : Rn × Ω→ R, i = 1, · · · , k.
σ = (σ1, · · · , σd ) : [0, τ ]× Rn × Rm × Ω→ Rn×d ,
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Framework

(Ω,F ,F, P) is a complete filtered probability space,
F = {Ft}0≤t≤τ is the natural filtration generated by W (·)
(augmented by all the P-null sets) ;

U ⊂ Rm is closed and nonempty ;

u(·) is a control taking values in U, while x(·) is the corresponding
solution to the stochastic control system :

x(t) = x0 +
∫ t

0 b(s, x(s), u(s))ds +
∫ t

0 σ(s, x(s), u(s))dW (s)

We impose the usual measurability/regularity/boundedness
assumptions on b, σ, ϕ, gi and their derivatives.
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Admissible Pairs for Stochastic System
B([0, τ ]) denotes the Borel σ-field on [0, τ ],
U is the set of B([0, τ ])⊗F-measurable and F-adapted stochastic
processes with values in U such that
‖u‖2 :=

(
E
∫ τ

0 |u(t)|2dt
)1/2

<∞.

Denote by x the stochastic process corresponding to a control
u ∈ U and initial condition x0. (x , u) is called an admissible pair if
in addition x0 ∈ K0, Egi (x(τ)) ≤ 0, i = 1, ..., k. Set

J(x , u) := E ϕ(x(τ))

An admissible pair (x̄ , ū) is a weak local minimizer if ∃ δ > 0 such
that for any admissible (x , u) with ‖u − ū‖2 + |x(0)− x̄(0)| < δ

J(x , u) ≥ J(x̄ , ū)
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Linearized System
Let (x̄ , ū) be a weak local minimizer.
For φ = bx , bu, σx , σu, denote φ[t] := φ(t, x̄(t), ū(t)).
Consider the linearized stochastic control system:

(L)


dy(t) =

(
bx [t]y(t) + bu[t]v(t)

)
dt

+
d∑

j=1

(
σj

x [t]y(t) + σj
u[t]v(t)

)
dW j(t)

y(0) = ν0

v ∈ L2
F(Ω; L2(0, τ ;Rm)) satisfies v ∈ TU (ū), ν0 ∈ TK0(x̄(0)).

L2
F(Ω; C([0, τ ];Rn)) - B([0, τ ])⊗F-measurable, F-adapted

continuous processes ζ : [0, τ ]× Ω→ Rn such that

‖ζ‖∞,2 :=
[
E
(

sup
t∈[0,τ ]

|ζ(t, ω)|2
)] 1

2 < +∞
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Variational Equation

Consider νε0 ∈ Rn and vε ∈ L2
F(Ω; L2(0, τ ; Rm)) such that

x̄(0) + ενε0 ∈ K0, ū + εvε ∈ U

νε0 → ν0, vε → v as ε→ 0+

Let xε be the state corresponding to the control uε := ū + εvε and
the initial datum xε0 := x̄(0) + ενε0 .

Lemma

∥∥∥∥xε − x̄
ε
− y

∥∥∥∥
∞,2
→ 0 as ε→ 0+
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Reachable Set

We restrict our attention to controls v ∈ L2
F(Ω; L2(0, τ ;Rm))

satisfying v(t) ∈ CU(ū(t)) a.s., for a.e. t ∈ [0, τ ].
Define the reachable set of the linearized system by:

R(1) :=
{

y(τ) ∈ L2
Fτ

(Ω;Rn)
∣∣ y solves (L), v as above, ν0 ∈ CK0(x̄(0)

}
Consider a linearization of end-point constraints

Q(1) :=
{

z ∈ L2
Fτ

(Ω;Rn)
∣∣ E〈g i

x (x̄(τ)), z
〉
< 0 ∀ i ∈ Ia)

}
where

Ia :=
{

i
∣∣ E g i (x̄(τ)) = 0

}
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Nonintersection of Convex Sets

Define L(1) :=
{

z ∈ L2
Fτ

(Ω;Rn)
∣∣ E 〈ϕx (x̄(τ)), z〉 < 0

}
Show using the variational equation that R(1) ∩Q(1) ∩ L(1) = ∅.
Apply separation theorems to get first order necessary optimality
conditions.

First order adjoint systemdP1(t) = −
(
bx [t]?P1(t) +

d∑
j=1
σj

x [t]?Qj
1(t)

)
dt +

d∑
j=1

Qj
1(t)dW j(t)

P1(τ) = ξ

Under our assumptions, by El Karoui, Peng, Quenez (1997),
it admits a unique strong solution
(P1(·),Q1(·)) ∈ L2

F(Ω; C([0, τ ];Rn))× L2
F(Ω; L2(0, τ ; Rn×d ))
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Hamiltonian

Define the Hamiltonian by :

H(t, x , u, p, q, ω) := 〈p, b(t, x , u, ω)〉+
∑d

j=1〈qj , σj(t, x , u, ω)〉

for (t, x , u, p, q, ω) ∈ [0, τ ]× Rn × Rm × Rn × Rn×d × Ω. Let

H[t] := H(t, x̄(t), ū(t),P1(t),Q1(t)), t ∈ [0, τ ],

Hu[t], Hxx [t], Hxu[t] and Huu[t] are defined in a similar way.

The separation theorem and the Ito formulae imply
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Theorem 1: First Order Pointwise
Necessary Optimality Condition

(i) If Ia = ∅ or if Q(1) 6= ∅, then ∃ λ0 ∈ {0, 1}, λi ≥ 0 for i ∈ Ia
and a solution (P1,Q1) to the first order adjoint equation
with λ0 + E |P1(τ)| 6= 0 such that

− Hu[t] ∈ NU(ū(t)) a.s., for a.e. t ∈ [0, τ ]

− P1(0) ∈ NK0(x̄0), P1(τ) = λ0ϕx (x̄(τ)) +
∑
i∈Ia

λi g i
x (x̄(τ)).

(ii) If Ia 6= ∅ but Q(1) = ∅, then ∃ λi ≥ 0 for i ∈ Ia such that∑
i∈Ia λi > 0 and

∑
i∈Ia λi g i

x (x̄(τ)) = 0. In particular, the
relations from (i) hold true with λ0 = 0 and (P1,Q1) ≡ 0.

Furthermore, λ0 = 1 if Ia = ∅ or if Ia 6= ∅ and R(1) ∩Q(1) 6= ∅.
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Needle variations versus variational approach

When b, σ, f and g are differentiable up to the second order with
respect to x , then a stochastic maximum principle (which uses a
second order adjoint process) was proved by Peng, 1990 for global
minimizers using the classical spike (needle) variations of
Boltyanski.

This principle implies the above result. However we have imposed
weaker regularity requirements and do not need to consider second
order adjoint system. Further, our result concerns weak minimizers.
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Critical Variations of Controls

Assume in addition that ū ∈ L4
F(Ω; L4(0, τ ;Rm)).

Let v ∈L4
F(Ω; L4(0, τ ;Rm)) be such that

∃ η(·)∈L4
F(Ω; L4(0, τ ;R+)) and ε0 > 0 satisfying the following

distance estimates : ∀ ε ∈ [0, ε0]

distU (ū(t, ω) + εv(t, ω)) ≤ ε2η(t, ω), a.e. (t, ω) ∈ [0, τ ]× Ω

Let ν0 ∈ TK0(x̄(0)) and suppose that the corresponding solution y
of the linearized system is critical :

E
〈

g i
x (x̄(τ)), y(τ)

〉
≤0, ∀ i ∈ Ia, E 〈ϕx (x̄(τ)), y(τ)〉 = 0

Now the usual regularity/boundedness assumptions are imposed
also on the second derivatives of b, σ, ϕ, gi .
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Admissible Second Order Variations

Consider convex subsets

Ψ(t, ω) ⊂ T (2)
U (ū(t, ω); v(t, ω)) a.e. (t, ω) ∈ [0, τ ]× Ω

and a convex subset W(x̄(0), ν0) of T (2)
K0

(x̄(0), ν0) and let

M(ū, v) :=
{

h(·) ∈ L4
F(Ω; L4(0, τ ;Rm))

∣∣ h(t, ω) ∈ Ψ(t, ω) a.e.
}

Define
I :=

{
i ∈ Ia

∣∣ E〈g i
x (x̄(τ)), y(τ)

〉
= 0

}
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Same Strategy
1. Write the second order linearization of control system and
prove a second order variational equation.
2. Define its reachable set R2 for admissible controls in M(ū, v)
and initial conditions in W(x̄(0), ν0).
3. Define second order linearization of end-point constraints :

Q2 :=
{

z ∈ L2
Fτ

(Ω;Rn)
∣∣ ∀ i ∈ I

E
〈

g i
x (x̄(τ)), z

〉
+ 1

2E
〈

g i
xx (x̄(τ))y(τ), y(τ)

〉
<0

}
.

4. Show that R2 ∩Q2 ∩ L2 = ∅, where L2 :=

{z ∈ L2
Fτ

(Ω;Rn) |E 〈ϕx (x̄(τ)), z〉+ 1
2E 〈ϕxx (x̄(τ))y(τ), y(τ)〉<0}

5. Apply a separation theorem.
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Second Order Adjoint System



dP2(t) = −
(
bx [t]?P2(t) + P2(t)bx [t] +

d∑
j=1

σj
x [t]?P2(t)σj

x [t]

+
d∑

j=1
σj

x [t]?Qj
2(t) +

d∑
j=1

Qj
2(t)σj

x [t] + Hxx [t]
)
dt

+
d∑

j=1
Qj

2(t)dW j(t)

P2(τ) = ζ,

where ζ ∈ L2
Fτ

(Ω; Sn). It admits a unique strong solution
(P2(·),Q2(·))∈L2

F(Ω; C([0, τ ]; Sn))×
(
L2
F(Ω; L2(0, τ ; Sn))

)d ,
where Hxx [t] = Hxx (t, x̄(t), ū(t),P1(t),Q1(t)).
cf. El Karoui, Peng, Quenez (1997).

H. Frankowska Second Order Variational Analysis in Optimal Control



Abstract Second-Order Optimality Conditions
Necessary Optimality Conditions: Deterministic Case
Second-Order Necessary Condition: Stochastic Case

First-Order Optimality Condition
Second-Order Optimality Condition

Notation

To simplify the notation, we define

S(t, x , u, y1, z1, y2, z2, ω) := Hxu(t, x , u, y1, z1, ω) + bu(t, x , u, ω)?y2

+
d∑

j=1
σj

u(t, x , u, ω)?z j
2 +

d∑
j=1

σj
u(t, x , u, ω)?y2σ

j
x (t, x , u, ω),

where (t, x , u, y1, z1, y2, z2, ω) ∈
[0, τ ]× Rn × Rm × Rn × Rn×d × Sn × (Sn)d × Ω. Write

S[t] = S(t, x̄(t), ū(t),P1(t),Q1(t),P2(t),Q2(t)),

where (P1(·),Q1(·)) and (P2(·),Q2(·)) solve the first and second
order adjoint systems, respectively.
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Theorem 2: Second Order Integral Condition
If M(ū, v) 6= ∅, then ∃ λ0 ∈ {0, 1}, λi ≥ 0 ( ∀ i ∈ I) not vanishing
simultaneously, adjoint processes (P1,Q1), (P2,Q2)

P1(τ) = −λ0ϕx (x̄(τ))−
∑
i∈I

λi g i
x (x̄(τ)),

P2(τ) = −λ0ϕxx (x̄(τ))−
∑
i∈I

λi g i
xx (x̄(τ))

such that (P1,Q1) satisfies the first order necessary conditions
and ∀ $0 ∈ W(x̄(0), ν0), ∀ h(·) ∈M(ū, v),

〈P1(0), $0〉+ 1
2〈P2(0)ν0, ν0〉+ E

∫ τ
0 (〈Hu[t], h(t)〉+ 〈S[t]y(t), v(t)〉+

1
2〈Huu[t]v(t), v(t)〉+ 1

2
∑d

j=1〈σ
j
u[t]?P2(t)σj

u[t]v(t), v(t)〉)dt ≤ 0

Furthermore, λ0 = 1 if Ia = ∅ or if Ia 6= ∅ and R2 ∩Q2 6= ∅.
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Example
n = m = 2, T = 1, U = {(u1, u2) ∈ R2 | |u1 + 1|2 + |u2|2 = 1}.

T [
U((0, 0)) = {0} × R, T [(2)

U ((0, 0); (0, 1)) 3 (−1
2 , 0).


dx1(t) = (x2(t)− 1

2 )dt + dW (t), t ∈ [0, 1],
dx2(t) = u1(t)dt + |u2(t)|4dW (t), t ∈ [0, 1],
x1(0) = 0, x2(0) = 0

J(u) = E
[1

2 |x1(1)−W (1)|2 +
∫ 1

0
|u2(t)|4dt

]
.

We show that (u1(t), u2(t)) ≡ (0, 0) is not locally optimal.
The corresponding solution of the control system is

(x1(t), x2(t)) = (W (t)− t
2 , 0)
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Example
The first order adjoint equation is

dP1
1 (t) = Q1

1(t)dW (t)
dP2

1 (t) = −P1
1 (t)dt + Q2

1(t)dW (t)
P1

1 (1) = −1
2 , P2

1 (1) = 0

Then

(P1
1 (t),Q1

1(t)) = (−1
2 , 0), (P2

1 (t),Q2
1(t)) = ( t − 1

2 , 0) a.s.

Hu[t] = (P2
1 (t), 4Q2

1(u2(t))3 − 4(u2(t))3) = ( t − 1
2 , 0).

Hence, the first order condition

〈Hu[t], v〉 ≤ 0, ∀ v = (v1, v2) ∈ T [
U((0, 0))

is satisfied.
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Example

Let v = (0, 1) and ν0 = (0, 0). Then y1(t) ≡ (0, 0) and the second
order necessary condition is

E
∫ 1

0
〈Hu[t], h〉dt ≤ 0, ∀ h ∈ T [(2)

U ((0, 0), (0, 1)).

For h = (−1
2 , 0), we have E

∫ 1
0 〈Hu[t], h〉dt = 1

8 > 0.

A contradiction. Thus ū ≡ 0 is not optimal.
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