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Nonlinear optimization with convex substructure

minimize
w ∈ Rnw

φ0(F0(w))

subject to Fi(w) ∈ Ωi i = 1, . . . ,m,

G(w) = 0

Assumptions:

twice continuously differentiable functions G : Rnw → Rng and
Fi : Rnw → RnFi for i = 0, 1, . . . ,m.

outer function φ0 : RnF0 → R convex.

sets Ωi ⊂ RnFi convex for i = 1, . . . ,m,
(possibly z ∈ Ωi ⇔ φi(z) ≤ 0 with smooth convex φi)

Idea:
exploit convex substructure via iterative convex approximations.
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Why is this class of problems and algorithms interesting?

some nonlinear programming (NLP) problems have nonsmooth
convex constraints which cannot be treated by standard NLP solvers

there exist many reliable and efficient convex optimization solvers

Some application areas:

nonlinear matrix inequalities for reduced order controller design
[Fares, Noll, Apkarian 2002; Tran-Dinh et al. 2012]

ellipsoidal terminal regions in nonlinear model predictive control
[Chen and Allgöwer 1998; Verschueren 2016]

robustified inequalities in nonlinear optimization [Nagy and Braatz
2003; D., Bock, Kostina 2006]

tube-following optimal control problems [Van Duijkeren, 2019]

non-smooth composite minimization [Lewis and Wright 2016]

deep neural network training with convex loss functions
[Schraudolph 2002; Martens 2016]
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First the bad news

Iterative convex approximation methods such as sequential convex
programming (SCP) have only linear convergence in general.

The rate of convergence cannot be improved to superlinear by any
bounded semi-definite Hessian approximation [D., Jarre, Vogelbusch
2006]

Simple TR example problem with dominant nonconvexities in objective:

minimize
w ∈ R2

− w2
1 − (1− w2)2

subject to ‖w‖2 ≤ 1

But: many real-world problems have dominant convexities and SCP often
shows fast linear convergence in practice. How fast?
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Overview

Smooth unconstrained problems

Sequential Convex Programming (SCP)
Generalized Gauss-Newton (GGN)
Local convergence analysis
Desirable divergence
Illustrative example in CasADi

Constrained problems

Sequential Convex Programming (SCP)
Sequential Linear Programming (SLP)
Constrained Generalized Gauss-Newton (CGGN)
Sequential Convex Quadratic Programming (SCQP)

Recent Progress in Dynamic Optimization and Applications
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Simplest case: smooth unconstrained problems

Unconstrained minimization of ”convex over nonlinear” function:

minimize
w ∈ Rn

φ(F (w))︸ ︷︷ ︸
=:f(w)

Assumptions:
- Inner function F : Rn → RN of class C3

- Outer function φ : RN → R of class C3 and convex

Remark:
F, φ, f ∈ C3 avoids technical details that would obfuscate main results.
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Notation and Preliminaries

Matrix inequality A � B for A,B ∈ Sn (symmetric matrices)

Gradient ∇f(w) ∈ Rn and Hessian ∇2f(w) ∈ Sn for f : Rn → R

Jacobian J(w) := ∂F
∂w (w) ∈ RN×n for F : Rn → RN

Linearization (first order Taylor series) at w̄ ∈ Rn:

Flin(w; w̄) := F (w̄) + J(w̄) (w − w̄)

Big O(·) notation: e.g. Flin(w; w̄) = F (w) +O(‖w − w̄‖2)

Note: gradient of f(w) = φ(F (w)) is ∇f(w) = J(w)>∇φ(F (w))
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Method 1: Sequential Convex Programming (SCP)

Starting at w0 ∈ Rn we generate sequence . . . , wk, wk+1, . . .

by obtaining wk+1 as solution of convex subproblem at w̄ = wk:

minimize
w ∈ Rn

φ (Flin(w; w̄))︸ ︷︷ ︸
=:fSCP(w;w̄)

(1)

(requires possibly expensive calls of a convex optimization solver)

Observation: fSCP(w; w̄) = f(w) +O(‖w − w̄‖2)

Corollary: ∇f(w̄) = 0 ⇔ w̄ fixed point of SCP

(if subproblems (1) have unique solutions)
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Tutorial Example

Regard F (w) =

[
sin(w)

exp(w)− 2

]
and φ(z) = z4

1 + z2
2

Linearization: Flin(w; w̄) =

[
sin(w̄) + cos(w̄)(w − w̄)

exp(w̄)− 2 + exp(w̄)(w − w̄)

]
SCP objective:

fSCP(w; w̄) = (sin(w̄)+cos(w̄)(w−w̄))
4

+

(exp(w̄)−2+exp(w̄)(w−w̄))
2

Fig.: f(w) = φ(F (w)) (solid) and fSCP(w; w̄) (dashed) for w̄ = 0
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SCP for Least Squares Problems = Gauss-Newton

With quadratic φ(z) = 1
2‖z‖

2
2 = 1

2z
>z, SCP subproblems become

minimize
w ∈ Rn

1

2
‖F (wk) + J(wk)(w − wk)‖22 (2)

If rank(J) = n this is uniquely solvable, giving

wk+1 = wk −
(
J(wk)>J(wk)︸ ︷︷ ︸

=:BGN(wk)

)−1

J(wk)>F (wk)︸ ︷︷ ︸
=∇f(wk)

SCP applied to LS = Newton method with ”Gauss-Newton Hessian”

BGN(w) ≈ ∇2f(w)
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Method 2: Generalized Gauss-Newton cf. [Schraudolph 2002]

For general convex φ(·) we have for f(w) = φ(F (w))

∇2f(w) = J(w)> ∇2φ(F (w)) J(w)︸ ︷︷ ︸
=:BGGN(w)

”GGN Hessian”

+
∑N

j=1∇2Fj(w) ∇zjφ(F (w))︸ ︷︷ ︸
=:EGGN(w)

”Error matrix”

Generalized Gauss-Newton (GGN) method iterates according to

wk+1 = wk −BGGN(w)−1∇f(wk)

Note: GGN solves convex quadratic subproblems

min
w∈Rn

f(wk)+∇f(wk)>(w−wk)+
1

2
(w−wk)>BGGN(wk)(w−wk)︸ ︷︷ ︸

=:fGGN(w;wk)
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Tutorial Example: GGN and SCP

Regard again F (w) =

[
sin(w)

exp(w)− 2

]
and φ(z) = z4

1 + z2
2

Jacobian:

J(w̄) =

[
cos(w̄)
exp(w̄)

]
GGN objective at w̄ = 0:

fGGN(w; w̄) = (exp(w̄)−2+exp(w̄)(w−w̄))
2

Figure shows f (solid), fSCP (dashed) and fGGN (dash dotted)
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Differences and Similarities of SCP and GGN

both SCP and GGN generalize the Gauss-Newton method
(and become equal to it when applied to nonlinear least squares)

both iteratively solve convex optimization problems

GGN only solves a positive definite linear system per iteration

SCP solves a full convex problem per iteration (5-30x slower)

SCP often less sensitive to initialization

both are NOT second order methods

both converge linearly with the same rate (details follow)
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Local Convergence Analysis for SCP and GGN

Recall:
fSCP(w; w̄) = φ (Flin(w; w̄))
fGGN(w; w̄) = f(w̄)+∇f(w̄)>(w−w̄)+ 1

2 (w−w̄)>BGGN(w̄)(w−w̄)
∇wfSCP(w̄; w̄) = ∇wfGGN(w̄; w̄) = ∇f(w̄)

Lemma 1 (Equality of SCP and GGN up to Second Order)

fSCP(w; w̄) = fGGN(w; w̄) +O(‖w − w̄‖3)

Proof: ∇2
wfSCP(w̄; w̄) = BGGN(w̄) = ∇2

wfGGN(w̄; w̄)

Note: in general BGGN(w̄) 6= ∇2f(w̄)
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Local Convergence of SCP and GGN

Main Theorem 1 [Diehl and Messerer, CDC 2019]

Regard w∗ with ∇f(w∗) = 0 and BGGN(w∗) � 0. Then

w∗ is a fixed point for both the SCP and GGN iterations

both methods are well-defined in a neighborhood of w∗

their linear contraction rates are equal and given by the LMI

min{α ∈ R | − αBGGN(w∗) � EGGN(w∗) � αBGGN(w∗)}

Corollary: Necessary condition for local convergence of both methods is

BGGN(w∗) � 1

2
∇2f(w∗) � 0

*Proof of corollary: Set α=1 and use EGGN(w∗)=∇2
wf(w∗)−BGGN(w∗)

16 / 42



Local Convergence of SCP and GGN

Main Theorem 1 [Diehl and Messerer, CDC 2019]

Regard w∗ with ∇f(w∗) = 0 and BGGN(w∗) � 0. Then

w∗ is a fixed point for both the SCP and GGN iterations

both methods are well-defined in a neighborhood of w∗

their linear contraction rates are equal and given by the LMI

min{α ∈ R | − αBGGN(w∗) � EGGN(w∗) � αBGGN(w∗)}

Corollary: Necessary condition for local convergence of both methods is

BGGN(w∗) � 1

2
∇2f(w∗) � 0

*Proof of corollary: Set α=1 and use EGGN(w∗)=∇2
wf(w∗)−BGGN(w∗)

16 / 42



Local Convergence of SCP and GGN

Main Theorem 1 [Diehl and Messerer, CDC 2019]

Regard w∗ with ∇f(w∗) = 0 and BGGN(w∗) � 0. Then

w∗ is a fixed point for both the SCP and GGN iterations

both methods are well-defined in a neighborhood of w∗

their linear contraction rates are equal and given by the LMI

min{α ∈ R | − αBGGN(w∗) � EGGN(w∗) � αBGGN(w∗)}

Corollary: Necessary condition for local convergence of both methods is

BGGN(w∗) � 1

2
∇2f(w∗) � 0

*Proof of corollary: Set α=1 and use EGGN(w∗)=∇2
wf(w∗)−BGGN(w∗)

16 / 42



*Proof of Main Theorem

Define solution operators wsol
SCP(w̄) and wsol

GGN(w̄) at linearization point
w̄ and apply the implicit function theorem to

∇wfi(w
sol
i (w̄); w̄) = 0 for i = SCP,GGN

Well-defined for w̄ in neighborhood of w∗ because
∇2

wfSCP(w∗;w∗) = ∇2
wfGGN(w∗;w∗) = BGGN(w∗) � 0, and derivatives

are given by

dwsol
i

dw̄
(w∗) = −(∇w∇wfi(w

∗;w∗)︸ ︷︷ ︸
=BGGN(w∗)=:B∗

)−1∇w̄∇wfi(w
∗;w∗)︸ ︷︷ ︸

=EGGN(w∗)=:E∗

We used that all second derivatives are equal due to Lemma 3 and that

∇w̄∇wfGGN(w∗;w∗) = ∇w̄ (∇f(w̄) +BGGN(w̄)(w − w̄))|w=w̄=w∗

= ∇2f(w∗)−BGGN(w∗) = EGGN(w∗)
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*Proof of Main Theorem (continued)

Spectral radius ρ(−B−1
∗ E∗) = ρ(B−1

∗ E∗) equals linear contraction rate
of SCP and GGN algorithms. Matrix can be transformed to similar, but

symmetric matrix: B−1
∗ E∗ ∼ B

− 1
2
∗ E∗ B

− 1
2
∗ with same spectral radius.

Now, ρ(B
− 1

2
∗ E∗ B

− 1
2
∗ ) ≤ α ⇔ −αI � B−

1
2
∗ E∗ B

− 1
2
∗ � αI

⇔ −αB∗ � E∗ � αB∗
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Desirable divergence and mirror problem, cf. [Bock 1987]

SCP and GGN do not converge to every local minimum. This can help to
avoid ”bad” local minima, as discussed next.

Regard maximum likelihood estimation problem minw φ(M(w)− y)

with nonlinear model M : Rn → RN and measurements y ∈ RN .
Assume penalty φ is symmetric with φ(−z) = φ(z) as is the case for
symmetric error distributions. At a solution w∗, we can generate ”mirror
measurements” ymr := 2M(w∗)− y obtained by reflecting the residuals.
From a statistical point of view, ymr should be as likely as y.
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SCP Divergence ⇔ Minimum unstable under mirroring

Theorem 2 [Diehl and Messerer 2019] generalizing [Bock 1987]

Regard a local minimizer w∗ of f(w) = φ(M(w)− y) with
∇2f(w∗) � 0. If the necessary SCP-GGN-convergence condition
BGGN(w∗) � 1

2∇
2f(w∗) does not hold, then w∗ is a stationary point of

the mirror problem but not a local minimizer.

*Sketch of proof: use M(w∗)− ymr = y −M(w∗) to show that
∇fmr(w

∗) = J(w∗)>(y −M(w∗)) = 0 and
∇2fmr(w

∗) = BGGN(w∗)− EGGN(w∗) = 2BGGN(w∗)−∇2f(w∗) 6� 0
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Illustrative example (experiments conducted by Florian Messerer)

0 2 4 6 8

−1

0

1

input x

o
u
tp

u
t

y

m(x,wtrue)

Regard scalar model with unknown parameter w

m(x,w) := sin(wx)

with input output measurements (xi, yi) for i = 1, . . . , N (left plot).
Define Mi(w) := m(xi, w) and F (w) := M(w)− y
As outer convexity we use a Huber-like penalty (right plot)

φ(z) :=
1

N

N∑
i=1

√
δ2 + z2

i , (3)
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Implementation of SCP and GGN

obtain all needed derivatives from CasADi via MATLAB interface

use linear solve (”backslash”) for GGN

formulate SCP subproblem as second order cone program (SOCP):

min
w ∈ R,
s ∈ RN

N∑
i=1

si

s.t.
√
δ2 + Flin,i(w;wk)2 ≤ si for i = 1, . . . , N

use Gurobi via CasADi as SOCP solver
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CasADi for Optimization Modelling

  

● A software framework for nonlinear optimization and optimal control
● “Write an efficient optimal control solver in a few lines”
● Implements automatic differentiation (AD) on sparse matrix-valued 

computational graphs in C++11
● Front-ends to Python, Matlab and Octave
● Supports C code generation
● Back-ends to SUNDIALS, CPLEX, Gurobi, qpOASES, IPOPT, KNITRO, 

SNOPT, SuperSCS, OSQP, …
● Developed by Joel Andersson and Joris Gillis

http://casadi.org

Nov 18-20: Hands-on CasADi course on optimal control: http://hasselt2019.casadi.org

Jupyter CasADi demo for this talk: http://fgs.casadi.org
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Visualization of SCP and GGN Subproblems

0 0.5 1 1.5 2
0.5

1

1.5

2

model parameter w

co
st

f(w) fSCP(w; w̄) fGGN(w; w̄)

(w̄ = 1.15)
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Objective and Local Contraction Rate

f(w) and local rate α̌(w) = |∇2f(w)−BGGN(w)|
|BGGN(w)|

0 0.5 1 1.5 2 2.5 3
0

1

2

3
(a) (b)

model parameter w

f(w) − f∗ α̌(w)

Fast contraction rate at global minimum w∗ ≈ 1, otherwise slower.
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Empirical Contraction Rates in Agreement with Theorem 1

κk = |wk+1−wk|
|wk−wk−1|

co
n
tr

a
ct

io
n

ra
te
κ
k

2 4 6 8
0

0.5

1

1.5
(a) w0 = 1.3, w∗ ≈ 1

SCP

GGN

α̌(w∗)

10 20 30 40 50 60 70
0

0.5

1

1.5

iteration k

(b) w0 = 2.9, w∗ ≈ 2.88
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Iteration count: SCP more predictable than GGN

0.6 0.8 1 1.2 1.4
0

5

10

initial guess w0

it
er
a
ti
o
n
s
u
n
ti
l
co

n
v
er
g
en

ce SCP

GGN
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Overview

Smooth unconstrained problems

Sequential Convex Programming (SCP)
Generalized Gauss-Newton (GGN)
Local convergence analysis
Desirable divergence
Illustrative example in CasADi

Constrained problems

Sequential Convex Programming (SCP)
Sequential Linear Programming (SLP)
Constrained Generalized Gauss-Newton (CGGN)
Sequential Convex Quadratic Programming (SCQP)

Recent Progress in Dynamic Optimization and Applications
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Sequential Convex Programming (SCP)

minimize
w ∈ Rnw

φ0(F lin
0 (w; w̄))

subject to F lin
i (w; w̄) ∈ Ωi, i = 1, . . . ,m,

Glin(w; w̄) = 0

obtain wk+1 as solution of convex problem at w̄ = wk

only primal variables w̄ form ”optimizer state”, no multipliers needed

SCP is affine invariant
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A General Smooth NLP Formulation

From now on assume more smoothness and regard a smooth NLP

minimize
w ∈ Rnw

φ0(F0(w))︸ ︷︷ ︸
=:f0(w)

subject to φi(Fi(w))︸ ︷︷ ︸
=:fi(w)

≤ 0, i = 1, . . . ,m,

G(w) = 0

with convex C2 functions φ0, φ1, . . . , φm.
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Sequential Linear Programming (SLP)

If functions φ0, . . . , φm are linear, SCP just solves linear programs (LP):

minimize
w ∈ Rnw

f lin
0 (w; w̄)

subject to f lin
i (w; w̄) ≤ 0, i = 1, . . . ,m,

Glin(w; w̄) = 0

might be called Sequential Linear Programming (SLP)
(”Method of Approximation Programming” by Griffith & Stewart, 1961)

equivalent to standard SQP with zero Hessian

SLP only attracted to NLP solutions in vertices of feasible set

works very well for L1-estimation [Bock, Kostina, Schlöder 2007]

converges quadratically once correct active set is discovered
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Picture from Griffith and Stewart’s original 1961 paper 386 R. E. GRIFFITH AND R. A. STEWART

 y

 5-

 4-

 >i.P SOLUTION
 STARTING

 31 | ~~~~~P O I N T TR UE d

 o'I 3

 FIG. 4. Third LP problem

 For the purpose of illustration we will consider the problem of balancing cata-
 lytic reformer severity (S) with tetraethyl lead (TEL) level in gasoline blending.

 We will simplify the problem to the following.
 A catalytic reformer is a plant which can increase the octane number (ON)

 of a gasoline stream but only with an associated loss in volume of the gasoline
 stream. The only operating variable considered here is a severity parameter (S).
 The by-products from this reformer operation are not gasoline components but

 may be sold at a fixed unit price. The total value of the by-products will be
 (VBP). The operating cost (OC) of running the reformer is a function of S. The
 main product of the reformer is called reformate (R). The reformer has a fixed
 amount of feed which must be processed and all the reformate must be blended.

 TEL is a material which may be added to gasoline to increase the ON. TEL

 does not change the volume of the gasoline.
 Two blends of gasoline are required in this problem, premium (A) and regular

 (B). There is a maximum amount of premium which may be blended but no

 quantity restriction is placed on the regular.
 The only quality specification considered here is ON. Both blends A and B

 must meet a minimum ON.

This content downloaded from 46.183.103.17 on Thu, 21 Mar 2019 20:34:26 UTC
All use subject to https://about.jstor.org/terms
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Constrained Generalized Gauss-Newton [Bock 1987]

Use BGGN(w) := J0(w)>∇2φ0(F0(w))J0(w) and solve convex quadratic
program (QP)

minimize
w ∈ Rnw

f lin
0 (w; w̄) +

1

2
(w − w̄)>BGGN(w̄)(w − w̄)

subject to f lin
i (w; w̄) ≤ 0, i = 1, . . . ,m,

Glin(w; w̄) = 0

like SCP, the method is multiplier free

also affine invariant

Remark: for least-squares objectives, this method is due to [Bock 1987]. In
mathematical optimization papers, Bock’s method is called ”the Generalized
Gauss-Newton (GGN) method” because it generalizes the GN method to
constrained problems. To avoid a notation clash with computer science we
prefer to call Bock’s method ”the Constrained Gauss-Newton (CGN) method”.
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Sequential Convex Quadratic Programming (SCQP) [Verschueren et al. 2016]

BSCQP(w, µ) := J0(w)>∇2φ0(F0(w))J0(w) +
m∑
i=1

µiJi(w)>∇2φi(Fi(w))Ji(w)

minimize
w ∈ Rnw

f lin
0 (w; w̄) +

1

2
(w − w̄)>BSCQP(w̄, µ̄)(w − w̄)

subject to f lin
i (w; w̄) ≤ 0, i = 1, . . . ,m, | µ+,

Glin(w; w̄) = 0

again, only a QP needs to be solved in each iteration

again, affine invariant

”optimizer state” contains both, w̄ and inequality multipliers µ̄

BSCQP(w, µ) � BGGN(w) i.e. more likely to converge than GGN

SCQP has same contraction rate as SCP, characterized by two LMI on the
reduced Hessian approximation [Messerer &D., 2019]
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Overview

Smooth unconstrained problems

Sequential Convex Programming (SCP)
Generalized Gauss-Newton (GGN)
Local convergence analysis
Desirable divergence
Illustrative example in CasADi

Constrained problems

Sequential Convex Programming (SCP)
Sequential Linear Programming (SLP)
Constrained Generalized Gauss-Newton (CGGN)
Sequential Convex Quadratic Programming (SCQP)

Recent Progress in Dynamic Optimization and Applications
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Dynamic Optimization in a Nutshell

minimize
x, u

N∑
i=0

ϕi(Fi(xi, ui)) + ϕN (FN (xN ))

subject to xi+1 = Si(xi, ui), i = 0, . . . , N − 1,

Hi(xi, ui) ∈ Ωi, i = 0, . . . , N − 1,

HN (xN ) ∈ ΩN

variables w = (x, u) with x = (x0, . . . , xN ) and u = (u0, . . . , uN−1)

convexities in ϕi (e.g. quadratic) and Ωi (e.g. polyhedral)

nonlinearities in dynamic system Si and constraint functions Fi, Hi

often: Si result of time integration (direct multiple shooting)
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Recent Algorithmic Progress

Inexact Newton with Iterated Sensitivities (INIS) - Rien Quirynen

Generalized Nonlinear Static Feedback Integration - Jonathan Frey

Zero Order Moving Horizon Estimation - Katrin Baumgärtner

Advanced Step Real-Time Iteration - Armin Nurkanovic

Convex Inner Approximation (CIAO) for mobile robots - Tobias Schöls
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Recent Progress on Software and Applications

BLASFEO: BLAS for Embedded Optimization - Gianluca Frison

acados: real-time SCQP type algorithms for nonlinear model predictive
control (NMPC) - Robin Verschueren, Dimitris Kouzoupis, Gianluca
Frison, et al.

(both under permissive open-source BSD license)

Recent real-world NMPC applications:

NMPC of small quadcopters in Freiburg - Barbara Barrros

NMPC of human sized quadcopters in California - Andrea Zanelli

4 kHz NMPC of reluctance synchronous motor in Munich - Andrea Zanelli

100 Hz NMPC of Freiburg race cars - Daniel Kloeser

10 Hz CIAO-NMPC of mobile robots at Bosch - Tobias Schöls
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Some Real-Time SCP Applications
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Conclusions

Discussed a family of Iterative Convex Approximation Methods

Sequential Convex Programming (SCP) conceptually simplest
(”linearize nonlinearities, keep all convex structures”) and most
widely applicable e.g. to nonlinear cone programming.

Generalized Gauss-Newton (GGN) cheaper iterations as only QPs
are solved. Unconstrained GGN and constrained SCQP show
identical local convergence rates as SCP for smooth problems.

Local contraction rate for both SCP and GGN equals smallest α
satisfying −αBGGN(w∗) � ∇2f(w∗)−BGGN(w∗) � αBGGN(w∗)

Divergence might in fact be a desirable property in estimation as it
avoids being attracted by statistically unstable local minima
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