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Introduction on MINLP

Mixed Integer Non Linear Programming problem:

minc(x)

fi(x)≤ 0 ∀i ∈M
Lj ≤ xj ≤ Uj ∀j ∈ N
xj integer ∀j ∈ I

where c and f are twice continuously differentiable functions .

Bounds on variables are important.
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Spatial Branch-and-Bound

30 years ago: first general-purpose “exact” algorithms for nonconvex
MINLP.

Tree-like search
Explores search space exhaustively but implicitly
Builds a sequence of decreasing upper bounds and increasing
lower bounds to the global optimum
Exponential worst-case
Only general-purpose “exact” algorithm for MINLP
Since continuous vars are involved, should say “ε-approximate”
Like BB for MILP, but may branch on continuous vars
Done whenever one is involved in a nonconvex term
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Spatial B&B: Example

Original problem P
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Spatial B&B: Example

Starting point x ′
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Spatial B&B: Example

Local (upper bounding) solution x∗
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Spatial B&B: Example

Convex relaxation (lower) bound f̄ with |f ∗− f̄ |> ε
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Spatial B&B: Example

Branch at x = x̄ into C1,C2
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Spatial B&B: Example

Convex relaxation on C1: lower bounding solution x̄
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Spatial B&B: Example

localSolve. from x̄: new upper bounding solution x∗
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Spatial B&B: Example

|f ∗− f̄ |> ε: branch at x = x̄
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Spatial B&B: Example

Repeat on C3: get x̄ = x∗ and |f ∗− f̄ |< ε, no more branching
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Spatial B&B: Example

Repeat on C2: f̄ > f ∗ (can’t improve x∗ in C2)
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Spatial B&B: Example

Repeat on C4: f̄ > f ∗ (can’t improve x∗ in C4)
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Spatial B&B: Example

No more subproblems left, return x∗ and terminate
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Spatial B&B: Pruning

Search generates a tree
Suproblems are nodes
Nodes can be pruned by optimality, bound or infeasibility (when
subproblem is infeasible)
Otherwise, they are branched
Whole space explored
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Spatial B&B: General idea

Aimed at solving “factorable functions”, i.e., f and c of the form:

∑
h

∏
k

fhk (x ,y)

where fhk (x ,y) are ∈ {sum, product, quotient, power, exp, log, sin, cos,
abs} ∀h,k .

Exact reformulation of MINLP so as to have “isolated basic
nonlinear functions” (additional variables and constraints).
Relax (linear/convex) the basic nonlinear terms (library of
envelopes/underestimators).
Relaxation depends on variable bounds, thus branching
potentially strengthen it.
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Spatial B&B: Examples of Convexifications

P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, “Branching and
bounds tightening techniques for non-convex MINLP”. Optimization
Methods and Software 24(4-5): 597-634 (2009).
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The class of MINLP problems

min ∑
j∈N

Cjxj

fi(x) + ∑
k∈Hi

gik (xk )≤ 0 ∀i ∈M

Lj ≤ xj ≤ Uj ∀j ∈ N
xj integer ∀j ∈ I

where:
fi : Rn→ R are convex functions ∀i ∈M,
gik : R→ R are non convex univariate function ∀i ∈M,∀k ∈ Hi ,
Hi ⊆ N ∀i ∈M,
I ⊆ N, and
Lj and Uj are finite ∀i ∈M, j ∈ Hi
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General Framework

Global optimization algorithm proposed in
D’A., Lee, and Wächter (2009, 2012).

Init
Lower bounding

relaxation Q
Upper bounding

restriction R

Refinement

MATLAB MINLP solver NLP solver

AMPL
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General Framework
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General Framework

Fix the value of the integer variables→ nonconvex NLP
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General Framework
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The Upper Bounding problem

Upper Bound of the original problem:
1 The integer variables are fixed;
2 We solve the resulting non convex NLP problem to local optimality;

min ∑
j∈N

Cjxj

fi(x) + ∑
k∈Hi

gik (xk )≤ 0 ∀i ∈M

Lj ≤ xj ≤ Uj ∀j ∈ N
xj = x j ∀j ∈ I
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The Lower Bounding problem: step 1

For simplicity, let us consider a term of the form g(xk ) := gik (xk ):
g : R→ R is a univariate non convex function of xk , for some k
(1≤ k ≤ n).
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Automatically detect the concavity/convexity intervals or piecewise
definition:
[Pp−1,Pp] := the p-th subinterval of the domain of g (p ∈ {1 . . .p});
Ȟ := the set of indices of subintervals on which g is convex;
Ĥ := the set of indices of subintervals on which g is concave.
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The Lower Bounding problem: step 2

Introduction of additional variables δp ∈ [0,Pp−Pp−1] such that
xk = P0 + ∑

p̄
p=1 δp
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The Lower Bounding problem: step 2

Introduction of additional variables δp ∈ [0,Pp−Pp−1] such that
xk = P0 + ∑

p̄
p=1 δp = 0 + 1 + 0.75 + 0
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The Lower Bounding problem: step 2

All the δ ’s but at most 1 take either the lower or the upper bound
value
To model such behavior additional binary variables are needed:
zp ∈ {0,1} ∀p
z1 ≥ z2 ≥ ·· · ≥ zp

δp =


0 zp−1 = 0
[0,Pp−Pp−1] zp−1 = 1 and zp = 0
Pp−Pp−1 zp = 1

δ P1−P0 P2−P1 . . . Pp−1−Pp−2 [0,Pp−Pp−1] 0 . . . 0
z 1 1 . . . 1 0 0 . . . 0
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The Lower Bounding problem: step 2

Replace the term g(xk ) with:

∑
p
p=1 g(Pp−1 + δp)−∑

p−1
p=1 g(Pp) ,

and we include the following set of new constraints:

xk = P0 + ∑
p
p=1 δp ;

δp ≥ (Pp−Pp−1)zp , ∀p ∈ Ȟ ∪ Ĥ ;

δp ≤ (Pp−Pp−1)zp−1 , ∀p ∈ Ȟ ∪ Ĥ ;

0≤ δp ≤ Pp−Pp−1, ∀p ∈ {1, . . . , p̄};

with two dummy variables z0 := 1 and zp := 0 and two new sets of
variables zp (binary) and δp (continuous).
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The Lower Bounding problem: step 3

Still non convex;

Use piece-wise linear approximation for the concave intervals:
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The Lower Bounding problem: the convex MINLP
model

Replace the term g(xk ) with:

∑p∈Ȟ g(Pp−1 + δp) + ∑p∈Ĥ ∑b∈Bp g(Xp,b) αp,b−∑
p−1
p=1 g(Pp) ,

and we include the following set of new constraints:

P0 + ∑
p
p=1 δp−xk = 0 ;

δp− (Pp−Pp−1)zp ≥ 0 , ∀p ∈ Ȟ ∪ Ĥ ;

δp− (Pp−Pp−1)zp−1 ≤ 0 , ∀p ∈ Ȟ ∪ Ĥ ;

Pp−1 + δp−∑b∈Bp Xp,b αp,b = 0 , ∀p ∈ Ĥ ;

∑b∈Bp αp,b = 1 , ∀p ∈ Ĥ ;

{αp,b : b ∈ Bp} := SOS2 , ∀p ∈ Ĥ .

with two dummy variables z0 := 1, zp := 0 and the new set of variables
αp,b.
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Refining the Lower Bounding problem
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Add a breakpoint where the solution of problem Q of the previous
iteration lies (global convergence);
Add a breakpoint where the solution of problem R of the previous
iteration lies (speed up the convergence).
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Convergence Theorem

Theorem
Under mild assumptions (e.g., the non convex functions are uniformly
Lipschitz-continuous), the algorithm either terminates at a global
solution of the original problem, or each limit point of the sequence
{x l}∞

l=1 is a global solution of the original problem.
(x l = LB problem solution at iteration l)

Sketch of proof:
Ends in a finite n. iterations: either x l is feasible for the original
problem, or xUB such that UB = LB.
Otherwise, the basic idea: at each iteration, the error of problem Q

is shrinked because of the first refinement rule.
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Computational Results
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Limitations

Solving the Lower Bounding problem can be time consuming

At each iteration we solve the Lower Bounding problem from
scratch

Large number of iterations needed to converge
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Lower Bounding problem tightening

Let us consider the convex pieces:

g(Pp−1 + δp)−g(Pp−1)

with
0≤ δp ≤ (Pp−Pp−1)zp−1

zp−1 ∈ {0,1}

Its convex envelope is:

zp−1(g(Pp−1 + δp/zp−1)−g(Pp−1))
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Perspective function
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Where can we exploit it?

Use it to solve the Lower Bounding problem:

Reformulate the convex MINLP
Stronger the convex continuous relaxation
Generate stronger linear cuts
Solve the convex MINLP with cutting plane
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More Computational Results

PC: linearization of PR of LB problem
STD: linearization of original LB problem
Bonmin

Minotaur

SCIP

Tests on non linear knapsack problem and uncapacitated facility
location problem.

10,000 seconds time limit.

C. D’Ambrosio (CNRS&X) GO for MINLPs with separable non convexities FGS 2019 39 / 50



Results on the non linear knapsack problem

size PC STD Bonmin MINOTAUR SCIP
time cuts time cuts time time gap bgap time

10 0.014 96 0.015 102 0.267 0.09 - - 0.07
20 0.021 155 0.019 195 0.324 0.16 - - 0.10
50 0.048 431 0.085 678 0.617 0.63 - - 0.21

100 0.072 947 0.183 1182 1.067 3.44 - - 0.66
200 0.105 1780 0.565 2461 2.237 28.6 - - 131.2
500 0.380 4681 3.593 7821 8.406 7080 0.15 0.05 181.4

Table: NCK: comparison among the different algorithms
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Results on the uncapacitated facility location problem

instance PC STD Bonmin Minotaur
time gap bgap cuts time gap bgap cuts time gap bgap time gap bgap

6x12x1 0.35 - - 1673 0.26 - - 1531 1.37 - - 4.66 - -
6x12x2 0.45 - - 1842 0.42 - - 1796 5.64 - - 65.6 - -
6x12x3 7921 - - 33417 tl 54.3 52.4 180561 tl 657 796 tl 260 615
12x24x1 3.36 - - 9565 2.55 - - 8971 7.14 - - 57.4 - -
12x24x2 46.1 - - 19653 27.3 - - 17384 57.9 - - tl 17.4 10.5
12x24x3 tl 23.9 23.9 127380 tl 121 134 284557 tl ∞ 1524 tl 272 1447
24x48x1 261 - - 81372 316 - - 102160 116 - - 2844 - -
24x48x2 tl 5.93 5.67 164809 tl 9.66 9.66 409177 tl 73.4 26.4 tl 31.5 24.6

Table: UFL: Comparison among different algorithms
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Limitations

Solving the Lower Bounding problem can be time consuming

At each iteration we solve the Lower Bounding problem from
scratch

Large number of iterations needed to converge
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Disjunctive Cuts

ψ ∈ (0,Pk −Pk−1)

D1→ δk ≤ ψ and ——–
D2→ δk ≥ ψ and ——–
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Disjunctive Cuts

Strengthening

ψ ∈ (0,Pk −Pk−1)

D1→ δk ≤ ψ and ——–
D2→ δk ≥ ψ and ——–

PC D1∨D2 on perspective reformulation of convex MINLP
IDC {D1∧zk = 0}∨{D2∧zk−1 = 1}
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Computational Results

f (x) = ∑
n
i=1 ∑

n
j=1 Qijxixj

g(x0) =

1. s ·x0− 2cos(hπx0)
hπ

−x0 sin(hπx0), and
2. d(sin((hπx0) + 2eπ + sin−1(m

d ))) + m((hπx0) + 2eπ +

sin−1((m
d ))2 + v((hπx0) + 2eπ + sin−1(m

d )),
s randomly generated (uniform distribution) on [−4,+4], h on [7,15], d
on {100,200,300}, e on {−3,−2}, m on {−2,−1}, v on {10,15,20}.

Figure: Example of the function of type 1 (left) and type 2 (right).
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Figure: Example of the function of type 1 (left) and type 2 (right).
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Computational Results

inst. strategy CMINLP #iter.
1 Alg 1.07 18
1 Alg+PC 1.07 12
1 Alg+IDC 1.11 69
2 Alg 2.09 36
2 Alg+PC 2.15 22
2 Alg+IDC 2.09 38
3 Alg 2.56 221
3 Alg+PC 2.57 60
3 Alg+IDC 2.66 300
4 Alg -2.10 300
4 Alg+PC -2.10 29
4 Alg+IDC -2.13 26
5 Alg 2.70 73
5 Alg+PC 2.72 63
5 Alg+IDC 2.70 300

inst. strategy CMINLP #iter.
6 Alg 502.44 300
6 Alg+PC 506.85 300
6 Alg+IDC 502.44 300
7 Alg 502.48 300
7 Alg+PC 505.81 300
7 Alg+IDC 502.92 300
8 Alg 246.46 300
8 Alg+PC 252.14 300
8 Alg+IDC 246.46 300
9 Alg 504.40 300
9 Alg+PC 504.40 300
9 Alg+IDC 504.40 300
10 Alg 587.70 300
10 Alg+PC 587.70 300
10 Alg+IDC 589.60 300
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Computational Results

Alg Alg+PC Alg+IDC

inst. GAP1 GAP2 GAP3 GAP1 GAP2 GAP3 GAP1 GAP2 GAP3
1 4.25 4.25 81.43 8.38 8.38 79.01 2.42 4.25 29.67
2 15.62 15.62 80.78 22.70 27.06 79.72 15.62 15.62 79.54
3 4.57 4.57 98.28 8.27 8.88 79.39 0.83 4.57 18.82
4 0.34 1.96 80.37 0.69 3.96 74.37 1.66 1.96 76.91
5 88.34 88.34 99.38 94.36 94.47 99.21 88.34 88.34 93.10
6 7.34 7.34 93.26 12.33 13.63 92.24 7.34 7.34 41.12
7 8.20 8.20 89.62 14.31 14.88 92.74 8.16 8.20 42.62
8 9.77 9.77 93.16 17.02 17.61 90.73 9.77 9.77 50.65
9 7.32 7.32 92.70 15.19 15.19 86.48 7.32 7.32 74.71
10 4.08 4.08 93.85 8.31 8.31 88.87 3.93 4.08 47.93

GAP1 := 100 · GO−CMINLP
GO−NLP GAP2 := 100 · GO−MINLP

GO−NLP GAP3 := 100 · GO−CNLP
GO−NLP

GO: global optimum
(MI)NLP: convex (MI)NLP solution
C(MI)NLP: convex (MI)NLP solution after applying Disj. cuts
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Conclusions and Future Directions

Flexible framework that guarantees convergence to global
solution for relevant class of MINLPs

Perspective reformulation of the Lower Bounding problem
Disjunctive programming to improve relaxation of the concave
parts

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich
Ngueveu

Is the LB problem formulation the tightest?
Use the “Piecewise linear bounding of univariate functions” for
the concave part

When there is a mathematical structure/property , exploit it
Use continuous optimization and combinatorial optimization
tools together

Thanks!
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