Global Optimization methods for Mixed Integer Non Linear Programs with Separable Non Convexities

Claudia D'Ambrosio (joint works with A. Frangioni, C. Gentile, J. Lee, D. Skipper, D. Thomopulos, A. Wächter)

CNRS & École Polytechnique, France

French German Swiss Conference on Optimization. 2019 18 September 2019

- Introduction on MINLP
 - Spatial Branch-and-Bound
 - The class of MINLP problems
- General Framework
 - Upper Bounding problem
 - Lower Bounding problem
 - Refinement
 - Convergence Theorem
 - **Computational Results**
- Limitations and Improvements
 - Limitations
 - Lower Bounding problem tightening
 - More Computational Results
 - Disjunctive Cuts
 - Even More Computational Results
- Conclusions and Future Directions

Introduction on MINLP Spatial Branch-and-Bound Upper Bounding problem ۲ Convergence Theorem Limitations More Computational Results Even More Computational Results Mixed Integer Non Linear Programming problem:

 $\begin{array}{ll} \min \boldsymbol{c}(\boldsymbol{x}) \\ f_i(\boldsymbol{x}) \leq \boldsymbol{0} & \forall i \in \boldsymbol{M} \\ L_j \leq x_j \leq \boldsymbol{U}_j & \forall j \in \boldsymbol{N} \\ x_i \text{ integer} & \forall j \in \boldsymbol{I} \end{array}$

where c and f are twice continuously differentiable functions.

Bounds on variables are important.

30 years ago: first general-purpose "exact" algorithms for nonconvex MINLP.

- Tree-like search
- Explores search space exhaustively but implicitly
- Builds a sequence of decreasing upper bounds and increasing lower bounds to the global optimum
- Exponential worst-case
- Only general-purpose "exact" algorithm for MINLP Since continuous vars are involved, should say "ε-approximate"
- Like BB for MILP, but may branch on continuous vars Done whenever one is involved in a nonconvex term

→ ∃ →

C. D'Ambrosio (CNRS&X)

GO for MINLPs with separable non convexitie:

C. D'Ambrosio (CNRS&X)

GO for MINLPs with separable non convexitie:

C. D'Ambrosio (CNRS&X)

GO for MINLPs with separable non convexitie:

FGS 2019 6 / 50

C. D'Ambrosio (CNRS&X)

Convex relaxation on C_1 : lower bounding solution \bar{x}

C. D'Ambrosio (CNRS&X)

FGS 2019 6 / 50

localSolve. from \bar{x} : new upper bounding solution x^*

C. D'Ambrosio (CNRS&X)

Repeat on C_3 : get $\bar{x} = x^*$ and $|f^* - \bar{f}| < \varepsilon$, no more branching

C. D'Ambrosio (CNRS&X)

FGS 2019 6 / 50

C. D'Ambrosio (CNRS&X)

GO for MINLPs with separable non convexities

- Search generates a tree
- Suproblems are nodes
- Nodes can be pruned by optimality, bound or infeasibility (when subproblem is infeasible)
- Otherwise, they are branched
- Whole space explored

$$\sum_{h}\prod_{k}f_{hk}(x,y)$$

where $f_{hk}(x, y)$ are \in {sum, product, quotient, power, exp, log, sin, cos, abs} $\forall h, k$.

 $\sum_{h}\prod_{k}f_{hk}(x,y)$

where $f_{hk}(x, y)$ are \in {sum, product, quotient, power, exp, log, sin, cos, abs} $\forall h, k$.

• Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).

 $\sum_{h}\prod_{k}f_{hk}(x,y)$

where $f_{hk}(x, y)$ are \in {sum, product, quotient, power, exp, log, sin, cos, abs} $\forall h, k$.

- Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).
- Relax (linear/convex) the basic nonlinear terms (library of envelopes/underestimators).

 $\sum_{h}\prod_{k}f_{hk}(x,y)$

where $f_{hk}(x, y)$ are \in {sum, product, quotient, power, exp, log, sin, cos, abs} $\forall h, k$.

- Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).
- Relax (linear/convex) the basic nonlinear terms (library of envelopes/underestimators).
- Relaxation depends on variable bounds, thus branching potentially strengthen it.

.

Spatial B&B: Examples of Convexifications

P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, "Branching and bounds tightening techniques for non-convex MINLP". Optimization Methods and Software 24(4-5): 597-634 (2009).

Spatial Branch-and-Bound The class of MINLP problems Upper Bounding problem ۲ Convergence Theorem Limitations More Computational Results Even More Computational Results

The class of MINLP problems

$$\begin{split} \min \sum_{j \in N} C_j x_j \\ f_i(x) + \sum_{k \in H_i} g_{ik}(x_k) &\leq 0 \\ L_j &\leq x_j \leq U_j \\ x_j \text{ integer} \end{split} \qquad \begin{array}{l} \forall i \in M \\ \forall j \in N \\ \forall j \in I \end{array}$$

where:

- $f_i : \mathbb{R}^n \to \mathbb{R}$ are convex functions $\forall i \in M$,
- $g_{ik} : \mathbb{R} \to \mathbb{R}$ are non convex univariate function $\forall i \in M, \forall k \in H_i$,
- $H_i \subseteq N \quad \forall i \in M$,
- $I \subseteq N$, and
- L_j and U_j are finite $\forall i \in M, j \in H_i$

- Spatial Branch-and-Bound General Framework Upper Bounding problem Lower Bounding problem Refinement Convergence Theorem More Computational Results
 - Disjunctive Cuts
 - Even More Computational Results
 - Conclusions and Future Directions

Spatial Branch-and-Bound General Framework Upper Bounding problem ۲ Convergence Theorem Limitations More Computational Results Even More Computational Results

Global optimization algorithm proposed in D'A., Lee, and Wächter (2009, 2012).

Fix the value of the integer variables \rightarrow nonconvex NLP

FGS 2019 16 / 50

Spatial Branch-and-Bound General Framework Upper Bounding problem Convergence Theorem Limitations More Computational Results Even More Computational Results

Upper Bound of the original problem:

- The integer variables are fixed;
- We solve the resulting non convex NLP problem to local optimality;

$$\min \sum_{j \in N} C_j x_j$$

$$f_i(x) + \sum_{k \in H_i} g_{ik}(x_k) \le 0 \qquad \forall i \in M$$

$$L_j \le x_j \le U_j \qquad \forall j \in N$$

$$x_j = \underline{x}_j \qquad \forall j \in I$$

Spatial Branch-and-Bound General Framework Upper Bounding problem Lower Bounding problem Convergence Theorem Limitations More Computational Results Even More Computational Results

The Lower Bounding problem: step 1

For simplicity, let us consider a term of the form $g(x_k) := g_{ik}(x_k)$: $g : \mathbb{R} \to \mathbb{R}$ is a univariate non convex function of x_k , for some k $(1 \le k \le n)$.

Automatically detect the concavity/convexity intervals or piecewise definition:

 $[P_{p-1}, P_p] :=$ the *p*-th subinterval of the domain of g ($p \in \{1 \dots \overline{p}\}$); $\check{H} :=$ the set of indices of subintervals on which g is concave.

GO for MINLPs with separable non convexitie:

The Lower Bounding problem: step 2

Introduction of additional variables $\delta_p \in [0, P_p - P_{p-1}]$ such that $x_k = P_0 + \sum_{p=1}^{\bar{p}} \delta_p$

C. D'Ambrosio (CNRS&X)

GO for MINLPs with separable non convexities

FGS 2019 22 / 50
The Lower Bounding problem: step 2

Introduction of additional variables $\delta_p \in [0, P_p - P_{p-1}]$ such that $x_k = P_0 + \sum_{p=1}^{\bar{p}} \delta_p = 0 + 1 + 0.75 + 0$

GO for MINLPs with separable non convexities

The Lower Bounding problem: step 2

- All the δ's but at most 1 take either the lower or the upper bound value
- To model such behavior additional binary variables are needed: $z_p \in \{0,1\} \; \forall p$

•
$$z_1 \ge z_2 \ge \dots \ge z_p$$

• $\delta_p = \begin{cases} 0 & z_{p-1} = 0 \\ [0, P_p - P_{p-1}] & z_{p-1} = 1 \text{ and } z_p = 0 \\ P_p - P_{p-1} & z_p = 1 \end{cases}$
 $\delta_z \begin{vmatrix} P_1 - P_0 & P_2 - P_1 & \dots & P_{p-1} - P_{p-2} & [0, P_p - P_{p-1}] & 0 & \dots & 0 \\ 1 & 1 & \dots & 1 & 0 & 0 & \dots & 0 \end{cases}$

The Lower Bounding problem: step 2

Replace the term $g(x_k)$ with:

$$\sum_{
ho=1}^{\overline{
ho}} g(P_{
ho-1}+\delta_{
ho}) - \sum_{
ho=1}^{\overline{
ho}-1} g(P_{
ho}) ,$$

and we include the following set of new constraints:

$$\begin{split} x_k &= P_0 + \sum_{\rho=1}^{\overline{\rho}} \delta_\rho ;\\ \delta_p &\geq (P_p - P_{p-1}) z_p , \ \forall p \in \check{H} \cup \hat{H} ;\\ \delta_p &\leq (P_p - P_{p-1}) z_{p-1} , \ \forall p \in \check{H} \cup \hat{H} ;\\ 0 &\leq \delta_p \leq P_p - P_{p-1}, \ \forall p \in \{1, \dots, \overline{p}\}; \end{split}$$

with two dummy variables $z_0 := 1$ and $z_{\overline{\rho}} := 0$ and two new sets of variables z_{ρ} (binary) and δ_{ρ} (continuous).

Still non convex;

Use piece-wise linear approximation for the concave intervals:

The Lower Bounding problem: the convex MINLP model

Replace the term $g(x_k)$ with:

$$\sum_{\rho\in\check{H}}g(P_{\rho-1}+\delta_{\rho})+\sum_{\rho\in\hat{H}}\sum_{b\in B_{\rho}}g(X_{\rho,b}) \alpha_{\rho,b}-\sum_{\rho=1}^{\bar{\rho}-1}g(P_{\rho}),$$

and we include the following set of new constraints:

$$\begin{split} P_{0} + \sum_{p=1}^{\overline{p}} \delta_{p} - x_{k} &= 0 ; \\ \delta_{p} - (P_{p} - P_{p-1}) z_{p} \geq 0 , \ \forall p \in \check{H} \cup \hat{H} ; \\ \delta_{p} - (P_{p} - P_{p-1}) z_{p-1} \leq 0 , \ \forall p \in \check{H} \cup \hat{H} ; \\ P_{p-1} + \delta_{p} - \sum_{b \in B_{p}} X_{p,b} \alpha_{p,b} = 0 , \ \forall p \in \hat{H} ; \\ \sum_{b \in B_{p}} \alpha_{p,b} &= 1 , \ \forall p \in \hat{H} ; \\ \{\alpha_{p,b} : b \in B_{p}\} := \text{SOS2} , \quad \forall p \in \hat{H} . \end{split}$$

with two dummy variables $z_0 := 1$, $z_{\overline{p}} := 0$ and the new set of variables $\alpha_{p,b}$.

Outline

Spatial Branch-and-Bound General Framework Upper Bounding problem Refinement Convergence Theorem Limitations More Computational Results Even More Computational Results

Refining the Lower Bounding problem

- Add a breakpoint where the solution of problem Q of the previous iteration lies (global convergence);
- Add a breakpoint where the solution of problem R of the previous iteration lies (speed up the convergence).

29 / 50

Outline

Spatial Branch-and-Bound General Framework Upper Bounding problem Convergence Theorem Limitations More Computational Results Even More Computational Results

Theorem

Under mild assumptions (e.g., the non convex functions are uniformly Lipschitz-continuous), the algorithm either terminates at a global solution of the original problem, or each limit point of the sequence $\{\underline{x}^{l}\}_{l=1}^{\infty}$ is a global solution of the original problem. $(\underline{x}^{l} = LB \text{ problem solution at iteration } l)$

Sketch of proof:

- Ends in a finite n. iterations: either \underline{x}^{l} is feasible for the original problem, or x_{UB} such that UB = LB.
- Otherwise, the basic idea: at each iteration, the error of problem Q is shrinked because of the first refinement rule.

★ Ξ ► ★ Ξ ►

Outline

- Spatial Branch-and-Bound Upper Bounding problem ۲ Convergence Theorem **Computational Results** Limitations More Computational Results Even More Computational Results
 - Conclusions and Future Directions

Results for Nonlinear Continuous Knapsack problem

		SC-MINLP		COUE	NNE	BC	DNMIN 1	BONMIN 50	
	var/int/cons	time		time					
instance	original	(LB)	UB	(LB)	UB	time	UB	time	UB
nck_20_100	40/0/21	15.76	-159.444	3.29	-159.444	0.02	-159.444	1.10	-159.444
nck_20_200	40/0/21	23.76	-239.125	(-352.86)	-238.053	0.03	-238.053	0.97	-239.125
nck_20_450	40/0/21	15.52	-391.337	(-474.606)	-383.149	0.07	-348.460	0.84	-385.546
nck_50_400	100/0/51	134.25	-516.947	(-1020.73)	-497.665	0.08	-438.664	2.49	-512.442
nck_100_35	200/0/101	110.25	-81.638	90.32	-81.638	0.04	-79.060	16.37	-79.060
nck_100_80	200/0/101	109.22	-172.632	(-450.779)	-172.632	0.04	-159.462	15.97	-171.024

Results for Uncapacitated Facility Location problem

		SC-MINLP		COUENNE		E	BONMIN 1	BONMIN 50		
	var/int/cons	time		time						
instance	original	(LB)	UB	(LB)	UB	time	UB	time	UB	
ufl_1	45/3/48	116.47	4,330.400	529.49	4,330.400	0.32	4,330.400	369.85	4,330.400	
ufl_2	45/3/48	17.83	27,516.569	232.85	27,516.569	0.97	27,516.569	144.06	27,516.569	
ufl_3	32/2/36	8.44	2,292.777	0.73	2,292.775	3.08	2,292.777	3.13	2,292.775	

Results for Hydro Unit Commitment and Scheduling problem

		SC-MINLP		COUE	ENNE		BONMIN 1	BONMIN 50	
	var/int/cons	time		time					
instance	original	(LB)	UB	(LB)	UB	time	UB	time	UB
hydro_1	124/62/165	107.77	-10,140.763	(-11, 229.80)	-10,140.763	5.03	-10,140.763	5.75	-7,620.435
hydro_2	124/62/165	211.79	-3,932.182	(-12, 104.40)	-2,910.910	4.63	-3,928.139	7.02	-3,201.780
hydro_3	124/62/165	337.77	-4,710.734	(-12, 104.40)	-3,703.070	5.12	-4,131.095	13.76	-3,951.199

イロト イヨト イヨト イヨト

Outline

- Spatial Branch-and-Bound Upper Bounding problem Convergence Theorem Limitations and Improvements Limitations Lower Bounding problem tightening More Computational Results **Disjunctive Cuts** ۰ Even More Computational Results
 - **Conclusions and Future Directions**

• Solving the Lower Bounding problem can be time consuming

< ∃ >

- Solving the Lower Bounding problem can be time consuming
- At each iteration we solve the Lower Bounding problem from scratch

- Solving the Lower Bounding problem can be time consuming
- At each iteration we solve the Lower Bounding problem from scratch
- Large number of iterations needed to converge

Let us consider the convex pieces:

$$g(P_{p-1}+\delta_p)-g(P_{p-1})$$

with

•
$$0 \le \delta_{p} \le (P_{p} - P_{p-1})z_{p-1}$$

• $z_{p-1} \in \{0,1\}$

Its convex envelope is:

$$z_{p-1}(g(P_{p-1}+\delta_p/z_{p-1})-g(P_{p-1}))$$

Perspective function

C. D'Ambrosio (CNRS&X)

Use it to solve the Lower Bounding problem:

- Reformulate the convex MINLP
- Stronger the convex continuous relaxation
- Generate stronger linear cuts
- Solve the convex MINLP with cutting plane

More Computational Results

- PC: linearization of PR of LB problem
- STD: linearization of original LB problem
- Bonmin
- Minotaur
- SCIP

Tests on non linear knapsack problem and uncapacitated facility location problem.

10,000 seconds time limit.

Results on the non linear knapsack problem

size	PC		STD		Bonmin	MINOTAUR			SCIP
	time	cuts	time	cuts	time	time	gap	bgap	time
10	0.014	96	0.015	102	0.267	0.09	-	-	0.07
20	0.021	155	0.019	195	0.324	0.16	-	-	0.10
50	0.048	431	0.085	678	0.617	0.63	-	-	0.21
100	0.072	947	0.183	1182	1.067	3.44	-	-	0.66
200	0.105	1780	0.565	2461	2.237	28.6	-	-	131.2
500	0.380	4681	3.593	7821	8.406	7080	0.15	0.05	181.4

Table: NCK: comparison among the different algorithms

Results on the uncapacitated facility location problem

instance	PC			STD				Bonmin			Minotaur			
	time	gap	bgap	cuts	time	gap	bgap	cuts	time	gap	bgap	time	gap	bgap
6x12x1	0.35	-	-	1673	0.26	-	-	1531	1.37	-	-	4.66	-	-
6x12x2	0.45	-	-	1842	0.42	-	-	1796	5.64	-	-	65.6	-	-
6x12x3	7921	-	-	33417	tl	54.3	52.4	180561	tl	657	796	tl	260	615
12x24x1	3.36	-	-	9565	2.55	-	-	8971	7.14	-	-	57.4	-	-
12x24x2	46.1	-	-	19653	27.3	-	-	17384	57.9	-	-	tl	17.4	10.5
12x24x3	tl	23.9	23.9	127380	tl	121	134	284557	tl	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1524	tl	272	1447
24x48x1	261	-	-	81372	316	-	-	102160	116	-	-	2844	-	-
24x48x2	tl	5.93	5.67	164809	tl	9.66	9.66	409177	tl	73.4	26.4	tl	31.5	24.6

Table: UFL: Comparison among different algorithms

- Solving the Lower Bounding problem can be time consuming
- At each iteration we solve the Lower Bounding problem from scratch
- Large number of iterations needed to converge

Disjunctive Cuts

Strengthening

 $\psi \in (0, P_k - P_{k-1})$

•
$$D_1 \rightarrow \delta_k \leq \psi$$
 and ——
• $D_2 \rightarrow \delta_k \geq \psi$ and ——

イロト イ団ト イヨト イヨ

Strengthening

 $\psi \in (0, P_k - P_{k-1})$

•
$$D_1 \rightarrow \delta_k \leq \psi$$
 and ——
• $D_2 \rightarrow \delta_k \geq \psi$ and ——

PC $D_1 \lor D_2$ on perspective reformulation of convex MINLP

イロト イ理ト イヨト イヨト

Strengthening

 $\psi \in (0, P_k - P_{k-1})$

•
$$D_1 \rightarrow \delta_k \leq \psi$$
 and ——
• $D_2 \rightarrow \delta_k \geq \psi$ and ——

PC $\mathbf{D}_1 \lor \mathbf{D}_2$ on perspective reformulation of convex MINLP IDC $\{\mathbf{D}_1 \land z_k = 0\} \lor \{\mathbf{D}_2 \land z_{k-1} = 1\}$

Computational Results

 $f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij} x_i x_j$

イロト イ団ト イヨト イヨ

Computational Results

$$\begin{aligned} f(x) &= \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij} x_i x_j \\ g(x_0) &= \\ 1. \ s \cdot x_0 - \frac{2\cos(h\pi x_0)}{h\pi} - x_0 \sin(h\pi x_0), \text{ and} \\ 2. \ d(\sin((h\pi x_0) + 2e\pi + \sin^{-1}(\frac{m}{d}))) + m((h\pi x_0) + 2e\pi + \sin^{-1}((\frac{m}{d}))^2 + v((h\pi x_0) + 2e\pi + \sin^{-1}(\frac{m}{d})), \\ s \text{ randomly generated (uniform distribution) on } [-4, +4], h \text{ on } [7, 15], d \end{aligned}$$

on $\{100, 200, 300\}$, *e* on $\{-3, -2\}$, *m* on $\{-2, -1\}$, *v* on $\{10, 15, 20\}$.

C. D'Ambrosio (CNRS&X)

GO for MINLPs with separable non convexities

FGS 2019 45 / 50

Computational Results

inst.	strategy	CMINLP	#iter.	inst.	strategy	CMINLP	#iter.
1	Alg	1.07	18	6	Alg	502.44	300
1	Alg+PC	1.07	12	6	Alg+PC	506.85	300
1	Alg+IDC	1.11	69	6	Alg+IDC	502.44	300
2	Alg	2.09	36	7	Alg	502.48	300
2	Alg+PC	2.15	22	7	Alg+PC	505.81	300
2	Alg+IDC	2.09	38	7	Alg+IDC	502.92	300
3	Alg	2.56	221	8	Alg	246.46	300
3	Alg+PC	2.57	60	8	Alg+PC	252.14	300
3	Alg+IDC	2.66	300	8	Alg+IDC	246.46	300
4	Alg	-2.10	300	9	Alg	504.40	300
4	Alg+PC	-2.10	29	9	Alg+PC	504.40	300
4	Alg+IDC	-2.13	26	9	Alg+IDC	504.40	300
5	Alg	2.70	73	10	Alg	587.70	300
5	Alg+PC	2.72	63	10	Alg+PC	587.70	300
5	Alg+IDC	2.70	300	10	Alg+IDC	589.60	300

・ロト ・ 日 ト ・ ヨ ト ・

		Alg			Alg+PC		Alg+IDC			
inst.	GAP1	GAP2	GAP3	GAP1	GAP2	GAP3	GAP1	GAP2	GAP3	
1	4.25	4.25	81.43	8.38	8.38	79.01	2.42	4.25	29.67	
2	15.62	15.62	80.78	22.70	27.06	79.72	15.62	15.62	79.54	
3	4.57	4.57	98.28	8.27	8.88	79.39	0.83	4.57	18.82	
4	0.34	1.96	80.37	0.69	3.96	74.37	1.66	1.96	76.91	
5	88.34	88.34	99.38	94.36	94.47	99.21	88.34	88.34	93.10	
6	7.34	7.34	93.26	12.33	13.63	92.24	7.34	7.34	41.12	
7	8.20	8.20	89.62	14.31	14.88	92.74	8.16	8.20	42.62	
8	9.77	9.77	93.16	17.02	17.61	90.73	9.77	9.77	50.65	
9	7.32	7.32	92.70	15.19	15.19	86.48	7.32	7.32	74.71	
10	4.08	4.08	93.85	8.31	8.31	88.87	3.93	4.08	47.93	

 $\begin{array}{ll} GAP1 := 100 \cdot \frac{GO-CMINLP}{GO-NLP} & GAP2 := 100 \cdot \frac{GO-MINLP}{GO-NLP} & GAP3 := 100 \cdot \frac{GO-CNLP}{GO-NLP} \\ GO: \mbox{ global optimum} \\ (MI)NLP: \mbox{ convex (MI)NLP solution} \end{array}$

C(MI)NLP: convex (MI)NLP solution after applying Disj. cuts

-

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Spatial Branch-and-Bound Upper Bounding problem ۲ Convergence Theorem Limitations More Computational Results Even More Computational Results Conclusions and Future Directions

• Flexible framework that guarantees convergence to global solution for relevant class of MINLPs

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem
- **Disjunctive programming** to improve relaxation of the concave parts

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- **Perspective reformulation** of the Lower Bounding problem
- **Disjunctive programming** to improve relaxation of the concave parts

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich Ngueveu

- Is the LB problem formulation the tightest?
- Use the "Piecewise linear bounding of univariate functions" for the concave part

★ ∃ ► ★

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem
- **Disjunctive programming** to improve relaxation of the concave parts

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich Ngueveu

- Is the LB problem formulation the tightest?
- Use the "Piecewise linear bounding of univariate functions" for the concave part
- When there is a mathematical structure/property , exploit it
Conclusions and Future Directions

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem
- **Disjunctive programming** to improve relaxation of the concave parts

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich Ngueveu

- Is the LB problem formulation the tightest?
- Use the "Piecewise linear bounding of univariate functions" for the concave part
- When there is a mathematical structure/property, exploit it
- Use continuous optimization and combinatorial optimization tools together

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions and Future Directions

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem
- **Disjunctive programming** to improve relaxation of the concave parts

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich Ngueveu

- Is the LB problem formulation the tightest?
- Use the "Piecewise linear bounding of univariate functions" for the concave part
- When there is a mathematical structure/property, exploit it
- Use continuous optimization and combinatorial optimization tools together

イロト イヨト イヨト イヨ

References

- C. D'A., J. Lee, D. Skipper, D. Thomopulos. Handling Separable Non-Convexities with Disjunctive Cuts (submitted).
- C. D'A., A. Frangioni, C. Gentile. Strengthening the Sequential Convex MINLP Technique by Perspective Reformulations, **Optimization Letters** 13 (4), pp. 673–684. 2019.
- C. D'A.. Solving well-structured MINLP problems, Habilitation, 2018.
- C. D'A., A. Lodi. Mixed integer nonlinear programming tools: an updated practical overview, **Annals of Operations Research**, 204, pp. 301–320, 2013.
- C. D'A., J. Lee, A. Wächter. An algorithmic framework for MINLP with separable non-convexity, J. Lee and S. Leyffer (Eds.): Mixed-Integer Nonlinear
 Optimization: Algorithmic Advances and Applications, The IMA Volumes in Mathematics and its Applications, Springer NY, 154, pp. 315–347, 2012.
- C. D'A.. Application-oriented Mixed Integer Non-Linear Programming. 40R: A Quarterly Journal of Operations Research, 8 (3), pp. 319–322, 2010.
- C. D'A., J. Lee, A. Wächter. A global-optimization algorithm for mixed-integer nonlinear programs having separable non-convexity, A. Fiat and P. Sanders (Eds.): ESA 2009 (17th Annual European Symposium. Copenhagen, Denmark, September 2009), Lecture Notes in Computer Science 5757, pp. 107-118, Springer-Verlag Berlin Heidelberg, 2009.