Global Optimization methods for Mixed Integer Non Linear Programs with Separable Non Convexities

Claudia D'Ambrosio

(joint works with A. Frangioni, C. Gentile, J. Lee, D. Skipper, D.
Thomopulos, A. Wächter)

CNRS \& École Polytechnique, France

French German Swiss Conference on Optimization. 2019 18 September 2019

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound
(2) The class of MINLP problems
(3) General Framework
- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem
(4) Computational Results
(5) Limitations and Improvements
- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results
(6) Conclusions and Future Directions

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound
- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem
(4) Computational Results
(5) Limitations and Improvements
- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results

6 Conclusions and Future Directions

Introduction on MINLP

Mixed Integer Non Linear Programming problem:

$$
\begin{array}{ll}
\min c(x) & \\
f_{i}(x) \leq 0 & \forall i \in M \\
L_{j} \leq x_{j} \leq U_{j} & \forall j \in N \\
x_{j} \text { integer } & \forall j \in I
\end{array}
$$

where c and f are twice continuously differentiable functions.

Bounds on variables are important.

Spatial Branch-and-Bound

30 years ago: first general-purpose "exact" algorithms for nonconvex MINLP.

- Tree-like search
- Explores search space exhaustively but implicitly
- Builds a sequence of decreasing upper bounds and increasing lower bounds to the global optimum
- Exponential worst-case
- Only general-purpose "exact" algorithm for MINLP Since continuous vars are involved, should say " ε-approximate"
- Like BB for MILP, but may branch on continuous vars Done whenever one is involved in a nonconvex term

Spatial B\&B: Example

Spatial B\&B: Example

Starting point x^{\prime}

Spatial B\&B: Example

Spatial B\&B: Example

Spatial B\&B: Example

Branch at $x=\bar{x}$ into C_{1}, C_{2}

Spatial B\&B: Example

Convex relaxation on C_{1} : lower bounding solution \bar{x}

Spatial B\&B: Example

localSolve. from \bar{x} : new upper bounding solution x^{*}

Spatial B\&B: Example

Spatial B\&B: Example

Repeat on C_{3} : get $\bar{x}=x^{*}$ and $\left|f^{*}-\bar{f}\right|<\varepsilon$, no more branching

Spatial B\&B: Example

Repeat on $C_{2}: \bar{f}>f^{*}$ (can't improve x^{*} in C_{2})

Spatial B\&B: Example

Repeat on $C_{4}: \bar{f}>f^{*}$ (can't improve x^{*} in C_{4})

Spatial B\&B: Example

No more subproblems left, return x^{*} and terminate

Spatial B\&B: Pruning

- Search generates a tree
- Suproblems are nodes
- Nodes can be pruned by optimality, bound or infeasibility (when subproblem is infeasible)
- Otherwise, they are branched
- Whole space explored

Spatial B\&B: General idea

Aimed at solving "factorable functions", i.e., f and c of the form:

$$
\sum_{h} \prod_{k} f_{h k}(x, y)
$$

where $f_{h k}(x, y)$ are $\in\{$ sum, product, quotient, power, exp, log, sin, cos, abs $\} \forall h, k$.

Spatial B\&B: General idea

Aimed at solving "factorable functions", i.e., f and c of the form:

$$
\sum_{h} \prod_{k} f_{h k}(x, y)
$$

where $f_{h k}(x, y)$ are $\in\{$ sum, product, quotient, power, exp, log, sin, cos, abs $\} \forall h, k$.

- Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).

Spatial B\&B: General idea

Aimed at solving "factorable functions", i.e., f and c of the form:

$$
\sum_{h} \prod_{k} f_{h k}(x, y)
$$

where $f_{h k}(x, y)$ are $\in\{$ sum, product, quotient, power, exp, log, sin, cos, abs $\} \forall h, k$.

- Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).
- Relax (linear/convex) the basic nonlinear terms (library of envelopes/underestimators).

Spatial B\&B: General idea

Aimed at solving "factorable functions", i.e., f and c of the form:

$$
\sum_{h} \prod_{k} f_{h k}(x, y)
$$

where $f_{h k}(x, y)$ are $\in\{$ sum, product, quotient, power, exp, log, sin, cos, abs $\} \forall h, k$.

- Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).
- Relax (linear/convex) the basic nonlinear terms (library of envelopes/underestimators).
- Relaxation depends on variable bounds, thus branching potentially strengthen it.

Spatial B\&B: Examples of Convexifications

(a) $x_{2}=x_{1}^{3}$

(b) $x_{2}=\log x_{1}$

(c) $x_{2}=x_{1}^{2}$

(d) $x_{3}=x_{1} x_{2}$
P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, "Branching and bounds tightening techniques for non-convex MINLP". Optimization Methods and Software 24(4-5): 597-634 (2009).

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound
(2) The class of MINLP problems
(3) General Framework
- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem
(4) Computational Results
(5) Limitations and Improvements
- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results

6. Conclusions and Future Directions

The class of MINLP problems

$$
\begin{array}{ll}
\min \sum_{j \in N} C_{j} x_{j} & \\
f_{i}(x)+\sum_{k \in H_{i}} g_{i k}\left(x_{k}\right) \leq 0 & \forall i \in M \\
L_{j} \leq x_{j} \leq U_{j} & \forall j \in N \\
x_{j} \text { integer } & \forall j \in I
\end{array}
$$

where:

- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex functions $\forall i \in M$,
- $g_{i k}: \mathbb{R} \rightarrow \mathbb{R}$ are non convex univariate function $\forall i \in M, \forall k \in H_{i}$,
- $H_{i} \subseteq N \forall i \in M$,
- $I \subseteq N$, and
- L_{j} and U_{j} are finite $\forall i \in M, j \in H_{i}$

Outline

Introduction on MINLP

- Spatial Branch-and-Bound
(2) The class of MINLP problems
(3) General Framework
- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem

Computational Results
Limitations and Improvements

- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results

6. Conclusions and Future Directions

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound
(2) The class of MINLP problems

(3) General Framework

- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem
(4) Computational Results
(5) Limitations and Improvements
- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results

6. Conclusions and Future Directions

General Framework

Global optimization algorithm proposed in D'A., Lee, and Wächter $(2009,2012)$.

General Framework

General Framework

Fix the value of the integer variables \rightarrow nonconvex NLP

General Framework

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound
(2) The class of MINLP problems
(3) General Framework
- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem
(4) Computational Results
(5) Limitations and Improvements
- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results

6. Conclusions and Future Directions

The Upper Bounding problem

Upper Bound of the original problem:
(1) The integer variables are fixed;
(2) We solve the resulting non convex NLP problem to local optimality;

$$
\begin{array}{ll}
\min \sum_{j \in N} c_{j} x_{j} & \\
f_{i}(x)+\sum_{k \in H_{i}} g_{i k}\left(x_{k}\right) \leq 0 & \forall i \in M \\
L_{j} \leq x_{j} \leq U_{j} & \forall j \in N \\
x_{j}=\underline{x}_{j} & \forall j \in I
\end{array}
$$

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound

(2) The class of MINLP problems

(3) General Framework

- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem
(4) Computational Results
(5) Limitations and Improvernents
- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results
(3) Conclusions and Future Directions

The Lower Bounding problem: step 1

For simplicity, let us consider a term of the form $g\left(x_{k}\right):=g_{i k}\left(x_{k}\right)$: $g: \mathbb{R} \rightarrow \mathbb{R}$ is a univariate non convex function of x_{k}, for some k $(1 \leq k \leq n)$.

Automatically detect the concavity/convexity intervals or piecewise definition:
$\left[P_{p-1}, P_{p}\right]:=$ the p-th subinterval of the domain of $g(p \in\{1 \ldots \bar{p}\})$;
$\check{H}:=$ the set of indices of subintervals on which g is convex;
$\hat{H}:=$ the set of indices of subintervals on which g is concave.

The Lower Bounding problem: step 2

Introduction of additional variables $\delta_{p} \in\left[0, P_{p}-P_{p-1}\right]$ such that $x_{k}=P_{0}+\sum_{p=1}^{\bar{p}} \delta_{p}$

The Lower Bounding problem: step 2

Introduction of additional variables $\delta_{p} \in\left[0, P_{p}-P_{p-1}\right]$ such that $x_{k}=P_{0}+\sum_{p=1}^{\bar{p}} \delta_{p}=0+1+0.75+0$

The Lower Bounding problem: step 2

- All the δ 's but at most 1 take either the lower or the upper bound value
- To model such behavior additional binary variables are needed:
$z_{p} \in\{0,1\} \forall p$
- $z_{1} \geq z_{2} \geq \cdots \geq z_{p}$
- $\delta_{p}=\left\{\begin{array}{ll}0 & z_{p-1}=0 \\ {\left[0, P_{p}-P_{p-1}\right]} & z_{p-1}=1 \\ P_{p}-P_{p-1} & z_{p}=1\end{array}\right.$ and $z_{p}=0$

δ	$P_{1}-P_{0}$	$P_{2}-P_{1}$	\ldots	$P_{p-1}-P_{p-2}$	$\left[0, P_{p}-P_{p-1}\right]$	0	\ldots	0
z	1	1	\ldots	1	0	0	\ldots	0

The Lower Bounding problem: step 2

Replace the term $g\left(x_{k}\right)$ with:

$$
\sum_{p=1}^{\bar{p}} g\left(P_{p-1}+\delta_{\rho}\right)-\sum_{p=1}^{\bar{p}-1} g\left(P_{p}\right),
$$

and we include the following set of new constraints:

$$
\begin{aligned}
& x_{k}=P_{0}+\sum_{p=1}^{\bar{p}} \delta_{p} ; \\
& \delta_{p} \geq\left(P_{p}-P_{p-1}\right) z_{p}, \forall p \in \check{H} \cup \hat{H} ; \\
& \delta_{p} \leq\left(P_{p}-P_{p-1}\right) z_{p-1}, \forall p \in \check{H} \cup \hat{H} ; \\
& 0 \leq \delta_{p} \leq P_{p}-P_{p-1}, \forall p \in\{1, \ldots, \bar{p}\} ;
\end{aligned}
$$

with two dummy variables $z_{0}:=1$ and $z_{\bar{p}}:=0$ and two new sets of variables z_{p} (binary) and δ_{p} (continuous).

The Lower Bounding problem: step 3

Still non convex;

Use piece-wise linear approximation for the concave intervals:

The Lower Bounding problem: the convex MINLP model

Replace the term $g\left(x_{k}\right)$ with:

$$
\sum_{p \in \check{H}} g\left(P_{p-1}+\delta_{p}\right)+\sum_{p \in \hat{H}} \sum_{b \in B_{p}} g\left(X_{p, b}\right) \alpha_{p, b}-\sum_{p=1}^{\bar{p}-1} g\left(P_{p}\right),
$$

and we include the following set of new constraints:

$$
\begin{aligned}
& P_{0}+\sum_{p=1}^{\bar{p}} \delta_{p}-x_{k}=0 ; \\
& \delta_{p}-\left(P_{p}-P_{p-1}\right) z_{p} \geq 0, \forall p \in \check{H} \cup \hat{H} ; \\
& \delta_{p}-\left(P_{p}-P_{p-1}\right) z_{p-1} \leq 0, \forall p \in \check{H} \cup \hat{H} ; \\
& P_{p-1}+\delta_{p}-\sum_{b \in B_{p}} X_{p, b} \alpha_{p, b}=0, \forall p \in \hat{H} ; \\
& \sum_{b \in B_{p}} \alpha_{p, b}=1, \forall p \in \hat{H} ; \\
& \left\{\alpha_{p, b}: b \in B_{p}\right\}:=\text { SOS2 }, \quad \forall p \in \hat{H} .
\end{aligned}
$$

with two dummy variables $z_{0}:=1, z_{\bar{p}}:=0$ and the new set of variables $\alpha_{p, b}$.

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound
(2) The class of MINLP problems
(3) General Framework
- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem

4. Computational Results
(5) Limitations and Improvements

- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results

6. Conclusions and Future Directions

Refining the Lower Bounding problem

- Add a breakpoint where the solution of problem Q of the previous iteration lies (global convergence);
- Add a breakpoint where the solution of problem \mathcal{R} of the previous iteration lies (speed up the convergence).

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound

(2) The class of MINLP problems

(3) General Framework

- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem
(4) Computational Results
(5) Limitations and Improvements
- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results

6. Conclusions and Future Directions

Convergence Theorem

Theorem

Under mild assumptions (e.g., the non convex functions are uniformly Lipschitz-continuous), the algorithm either terminates at a global solution of the original problem, or each limit point of the sequence $\left\{\underline{x}^{\prime}\right\}_{l=1}^{\infty}$ is a global solution of the original problem.
($\underline{x}^{\prime}=$ LB problem solution at iteration I)
Sketch of proof:

- Ends in a finite n . iterations: either \underline{x}^{\prime} is feasible for the original problem, or $x_{U B}$ such that $U B=L B$.
- Otherwise, the basic idea: at each iteration, the error of problem Q is shrinked because of the first refinement rule.

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound
(2) The class of MINLP problems
(3) General Framework
- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem

(4) Computational Results

(5) Limitations and Improvements

- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results
(6) Conclusions and Future Directions

Computational Results

Results for Nonlinear Continuous Knapsack problem

instance	var/int/cons original	SC-MINLP		COUENNE		BONMIN 1		BOMMIN 50	
		(LB)	UB	(LB)	UB	time	UB	time	UB
nck_20_100	40/0/21	15.76	-159.444	3.29	-159.444	0.02	-159.444	1.10	-159.444
nck_20_200	40/0/21	23.76	-239.125	(-352.86)	-238.053	0.03	-238.053	0.97	-239.125
nck_20.450	40/0/21	15.52	-391.337	(-474.606)	-383.149	0.07	-348.460	0.84	-385.546
nck_50_400	100/0/51	134.25	-516.947	(-1020.73)	-497.665	0.08	-438.664	2.49	-512.442
nck_100_35	200/0/101	110.25	-81.638	90.32	-81.638	0.04	-79.060	16.37	-79.060
nck-100-80	200/0/101	109.22	-172.632	(-450.779)	-172.632	0.04	-159.462	15.97	-171.024

Results for Uncapacitated Facility Location problem

instance	var/int/cons original	SC-MINLP		COUENNE		BONMIN 1		BONMIN 50	
		$\begin{aligned} & \text { time } \\ & \text { (LB) } \end{aligned}$	UB	$\begin{aligned} & \text { time } \\ & (\mathrm{LB}) \\ & \hline \end{aligned}$	UB	time	UB	time	UB
ufl-1	45/3/48	116.47	4,330.400	529.49	4,330.400	0.32	4,330.400	369.85	4,330.400
ufl-2	45/3/48	17.83	27,516.569	232.85	27,516.569	0.97	27,516.569	144.06	27,516.569
uf1-3	32/2/36	8.44	2,292.777	0.73	2,292.775	3.08	2,292.777	3.13	2,292.775

Results for Hydro Unit Commitment and Scheduling problem

instance	var/int/cons original	SC-MINLP		couenne		bommin 1		Bonmin 50	
		time (LB)	UB	$\begin{aligned} & \text { time } \\ & \text { (LB) } \end{aligned}$	UB	time	UB	time	UB
hydro-1	124/62/165	107.77	-10,140.763	(-11,229.80)	-10,140.763	5.03	-10,140.763	5.75	-7,620.435
hydro 2	124/62/165	211.79	-3,932.182	(-12,104.40)	-2,910.910	4.63	-3,928.139	7.02	-3,201.780
hydro.3	124/62/165	337.77	-4,710.734	$(-12,104.40)$	-3,703.070	5.12	-4,131.095	13.76	-3,951.199

Outline

(5) Limitations and Improvements

- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results
(6) Conclusions and Future Directions

Limitations

- Solving the Lower Bounding problem can be time consuming

Limitations

- Solving the Lower Bounding problem can be time consuming
- At each iteration we solve the Lower Bounding problem from scratch

Limitations

- Solving the Lower Bounding problem can be time consuming
- At each iteration we solve the Lower Bounding problem from scratch
- Large number of iterations needed to converge

Lower Bounding problem tightening

Let us consider the convex pieces:

$$
g\left(P_{p-1}+\delta_{p}\right)-g\left(P_{p-1}\right)
$$

with

- $0 \leq \delta_{p} \leq\left(P_{p}-P_{p-1}\right) z_{p-1}$
- $z_{p-1} \in\{0,1\}$

Its convex envelope is:

$$
z_{p-1}\left(g\left(P_{p-1}+\delta_{p} / z_{p-1}\right)-g\left(P_{p-1}\right)\right)
$$

Perspective function

Where can we exploit it?

Use it to solve the Lower Bounding problem:

- Reformulate the convex MINLP
- Stronger the convex continuous relaxation
- Generate stronger linear cuts
- Solve the convex MINLP with cutting plane

More Computational Results

- PC: linearization of PR of LB problem
- STD: linearization of original LB problem
- Bonmin
- Minotaur
- SCIP

Tests on non linear knapsack problem and uncapacitated facility location problem.

10,000 seconds time limit.

Results on the non linear knapsack problem

size	PC		STD		Bonmin time	time	MINOTAUR gap	bgap	SCIP time
10	0.014	96	0.015	102	0.267	0.09	-	-	0.07
20	0.021	155	0.019	195	0.324	0.16	-	-	0.10
50	0.048	431	0.085	678	0.617	0.63	-	-	0.21
100	0.072	947	0.183	1182	1.067	3.44	-	-	0.66
200	0.105	1780	0.565	2461	2.237	28.6	-	-	131.2
500	0.380	4681	3.593	7821	8.406	7080	0.15	0.05	181.4

Table: NCK: comparison among the different algorithms

Results on the uncapacitated facility location problem

instance	PC				STD				Bonmin			Minotaur		
	time	gap	bgap	cuts	time	gap	bgap	cuts	time	gap	bgap	time	gap	bgap
$6 \times 12 \times 1$	0.35	-	-	1673	0.26	-	-	1531	1.37	-	-	4.66		
$6 \times 12 \times 2$	0.45	-	-	1842	0.42	-	-	1796	5.64	-	-	65.6	-	-
$6 \times 12 \times 3$	7921	-	-	33417	tl	54.3	52.4	180561	tl	657	796	tl	260	615
$12 \times 24 \times 1$	3.36	-	-	9565	2.55	-	-	8971	7.14	-	-	57.4	-	-
$12 \times 24 \times 2$	46.1	-	-	19653	27.3	-	-	17384	57.9	-	-	t	17.4	10.5
12x24x3	tl	23.9	23.9	127380	tl	121	134	284557	tl	∞	1524	t	272	1447
24x48x1	261	-	-	81372	316	-	-	102160	116	-	-	2844	-	-
24x48x2	t	5.93	5.67	164809	tl	9.66	9.66	409177	tl	73.4	26.4	t	31.5	24.6

Table: UFL: Comparison among different algorithms

Limitations

- Solving the Lower Bounding problem can be time consuming
- At each iteration we solve the Lower Bounding problem from scratch
- Large number of iterations needed to converge

Disjunctive Cuts

$\psi \in\left(0, P_{k}-P_{k-1}\right)$

- $\mathrm{D}_{1} \rightarrow \delta_{k} \leq \psi$ and
- $\mathrm{D}_{2} \rightarrow \delta_{k} \geq \psi$ and

Disjunctive Cuts

Strengthening

$$
\psi \in\left(0, P_{k}-P_{k-1}\right)
$$

- $\mathrm{D}_{1} \rightarrow \delta_{k} \leq \psi$ and
- $\mathrm{D}_{2} \rightarrow \delta_{k} \geq \psi$ and

Disjunctive Cuts

Strengthening

$\psi \in\left(0, P_{k}-P_{k-1}\right)$

- $\mathrm{D}_{1} \rightarrow \delta_{k} \leq \psi$ and
- $\mathrm{D}_{2} \rightarrow \delta_{k} \geq \psi$ and

PC $D_{1} \vee D_{2}$ on perspective reformulation of convex MINLP

Disjunctive Cuts

Strengthening

$\psi \in\left(0, P_{k}-P_{k-1}\right)$

- $\mathrm{D}_{1} \rightarrow \delta_{k} \leq \psi$ and
- $\mathrm{D}_{2} \rightarrow \delta_{k} \geq \psi$ and

PC $D_{1} \vee D_{2}$ on perspective reformulation of convex MINLP
IDC $\left\{\mathrm{D}_{1} \wedge z_{k}=0\right\} \vee\left\{\mathrm{D}_{2} \wedge z_{k-1}=1\right\}$

Computational Results

$$
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j} x_{i} x_{j}
$$

Computational Results

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j} x_{i} x_{j} \\
& g\left(x_{0}\right)=
\end{aligned}
$$

$$
\text { 1. } s \cdot x_{0}-\frac{2 \cos \left(h \pi x_{0}\right)}{h \pi}-x_{0} \sin \left(h \pi x_{0}\right) \text {, and }
$$

$$
\text { 2. } d\left(\sin \left(\left(h \pi x_{0}\right)+2 e \pi+\sin ^{-1}\left(\frac{m}{d}\right)\right)\right)+m\left(\left(h \pi x_{0}\right)+2 e \pi+\right.
$$

$$
\sin ^{-1}\left(\left(\frac{m}{d}\right)\right)^{2}+v\left(\left(h \pi x_{0}\right)+2 e \pi+\sin ^{-1}\left(\frac{m}{d}\right)\right)
$$

s randomly generated (uniform distribution) on $[-4,+4], h$ on $[7,15], d$ on $\{100,200,300\}$, e on $\{-3,-2\}, m$ on $\{-2,-1\}, v$ on $\{10,15,20\}$.

Computational Results

inst.	strategy	CMINLP	\#iter.	inst.	strategy	CMINLP	\#iter.
1	Alg	1.07	18	6	Alg	502.44	300
1	Alg+PC	1.07	12	6	Alg+PC	506.85	300
1	Alg+IDC	1.11	69	6	Alg+IDC	502.44	300
2	Alg	2.09	36	7	Alg	502.48	300
2	Alg+PC	2.15	22	7	Alg+PC	505.81	300
2	Alg+IDC	2.09	38	7	Alg+IDC	502.92	300
3	Alg	2.56	221	8	Alg	246.46	300
3	Alg+PC	2.57	60	8	$\mathrm{Alg}+\mathrm{PC}$	252.14	300
3	Alg+IDC	2.66	300	8	Alg+IDC	246.46	300
4	Alg	-2.10	300	9	Alg	504.40	300
4	Alg+PC	-2.10	29	9	Alg+PC	504.40	300
4	Alg+IDC	-2.13	26	9	Alg+IDC	504.40	300
5	Alg	2.70	73	10	Alg	587.70	300
5	Alg+PC	2.72	63	10	Alg+PC	587.70	300
5	Alg+IDC	2.70	300	10	Alg+IDC	589.60	300

Computational Results

inst.	Alg			Alg+PC			Alg+IDC		
	GAP1	GAP2	GAP3	GAP1	GAP2	GAP3	GAP1	GAP2	GAP3
1	4.25	4.25	81.43	8.38	8.38	79.01	2.42	4.25	29.67
2	15.62	15.62	80.78	22.70	27.06	79.72	15.62	15.62	79.54
3	4.57	4.57	98.28	8.27	8.88	79.39	0.83	4.57	18.82
4	0.34	1.96	80.37	0.69	3.96	74.37	1.66	1.96	76.91
5	88.34	88.34	99.38	94.36	94.47	99.21	88.34	88.34	93.10
6	7.34	7.34	93.26	12.33	13.63	92.24	7.34	7.34	41.12
7	8.20	8.20	89.62	14.31	14.88	92.74	8.16	8.20	42.62
8	9.77	9.77	93.16	17.02	17.61	90.73	9.77	9.77	50.65
9	7.32	7.32	92.70	15.19	15.19	86.48	7.32	7.32	74.71
10	4.08	4.08	93.85	8.31	8.31	88.87	3.93	4.08	47.93

$G A P 1:=100 \cdot \frac{G O-C M I N L P}{G O-N L P} \quad G A P 2:=100 \cdot \frac{G O-M I N L P}{G O-N L P} \quad G A P 3:=100 \cdot \frac{G O-C N L P}{G O-N L P}$
GO: global optimum
(MI)NLP: convex (MI)NLP solution

C(MI)NLP: convex (MI)NLP solution after applying Disj. cuts

Outline

(1) Introduction on MINLP

- Spatial Branch-and-Bound
(2) The class of MINLP problems
(3) General Framework
- Upper Bounding problem
- Lower Bounding problem
- Refinement
- Convergence Theorem
(4) Computational Results
(5) Limitations and Improvements
- Limitations
- Lower Bounding problem tightening
- More Computational Results
- Disjunctive Cuts
- Even More Computational Results

6 Conclusions and Future Directions

Conclusions and Future Directions

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs

Conclusions and Future Directions

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem

Conclusions and Future Directions

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem
- Disjunctive programming to improve relaxation of the concave parts

Conclusions and Future Directions

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem
- Disjunctive programming to improve relaxation of the concave parts

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich Ngueveu

- Is the LB problem formulation the tightest?
- Use the "Piecewise linear bounding of univariate functions" for the concave part

Conclusions and Future Directions

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem
- Disjunctive programming to improve relaxation of the concave parts

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich Ngueveu

- Is the LB problem formulation the tightest?
- Use the "Piecewise linear bounding of univariate functions" for the concave part
- When there is a mathematical structure/property, exploit it

Conclusions and Future Directions

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem
- Disjunctive programming to improve relaxation of the concave parts

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich Ngueveu

- Is the LB problem formulation the tightest?
- Use the "Piecewise linear bounding of univariate functions" for the concave part
- When there is a mathematical structure/property, exploit it
- Use continuous optimization and combinatorial optimization tools together

Conclusions and Future Directions

- Flexible framework that guarantees convergence to global solution for relevant class of MINLPs
- Perspective reformulation of the Lower Bounding problem
- Disjunctive programming to improve relaxation of the concave parts

With C. Artigues, A. Frangioni, C. Gentile, R. Trindade, S. Ulrich Ngueveu

- Is the LB problem formulation the tightest?
- Use the "Piecewise linear bounding of univariate functions" for the concave part
- When there is a mathematical structure/property, exploit it
- Use continuous optimization and combinatorial optimization tools together

Thanks!

References

- C. D'A., J. Lee, D. Skipper, D. Thomopulos. Handling Separable Non-Convexities with Disjunctive Cuts (submitted).
- C. D'A., A. Frangioni, C. Gentile. Strengthening the Sequential Convex MINLP Technique by Perspective Reformulations, Optimization Letters 13 (4), pp. 673-684. 2019.
- C. D'A.. Solving well-structured MINLP problems, Habilitation, 2018.
- C. D'A., A. Lodi. Mixed integer nonlinear programming tools: an updated practical overview, Annals of Operations Research, 204, pp. 301-320, 2013.
- C. D'A., J. Lee, A. Wächter. An algorithmic framework for MINLP with separable non-convexity, J. Lee and S. Leyffer (Eds.): Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications, The IMA Volumes in Mathematics and its Applications, Springer NY, 154, pp. 315-347, 2012.
- C. D'A.. Application-oriented Mixed Integer Non-Linear Programming. 4OR: A Quarterly Journal of Operations Research, 8 (3), pp. 319-322, 2010.
- C. D'A., J. Lee, A. Wächter. A global-optimization algorithm for mixed-integer nonlinear programs having separable non-convexity, A. Fiat and P. Sanders (Eds.): ESA 2009 (17th Annual European Symposium. Copenhagen, Denmark, September 2009), Lecture Notes in Computer Science 5757, pp. 107-118, Springer-Verlag Berlin Heidelberg, 2009.

