Representability of optimization models

Amitabh Basu

$19^{\text {th }}$ French-German-Swiss Conference on Optimization, Nice, France, September 2019

The modeling question

The optimizer's approach to making decisions:

The modeling question

The optimizer's approach to making decisions:

> Input Hidden
layer L_{2}
Hidden
Layer L_{3}

$$
f_{1}(x) \leq 0
$$

$$
f_{k}(x) \leq 0
$$

The modeling question

The optimizer's approach to making decisions:
Input Hidd

$$
\begin{aligned}
f_{1}(x) & \leq 0 \\
\vdots & \\
f_{k}(x) & \leq 0
\end{aligned}
$$

What exactly do specific optimization paradigms model?

$$
+5
$$

$$
A x \leq b
$$

$$
x \in\{0,1\}^{n}
$$

What exactly do specific optimization paradigms model?

What exactly do specific optimization paradigms model?

What exactly do specific optimization paradigms model?

EXAMPLE: Miller, Tucker, Zemlin TSP formulation

[^0]
Representability of an optimization paradigm

Given a family \mathcal{S} of sets defined by an optimization family (e.g., mixed-integer linear programs), we say that a set $X \subseteq \mathbb{R}^{n}$ is representable by \mathcal{S} if there exists $S \in \mathcal{S}$ and a linear transformation T such that $X=T(S)$.

Representability of an optimization paradigm

Given a family \mathcal{S} of sets defined by an optimization family (e.g., mixed-integer linear programs), we say that a set $X \subseteq \mathbb{R}^{n}$ is representable by \mathcal{S} if there exists $S \in \mathcal{S}$ and a linear transformation T such that $X=T(S)$.

$$
X=T(S)=\left\{x \in \mathbb{R}^{n}: x=T(s), \quad s \in S\right\}
$$

As long as the family \mathcal{S} is closed under addition of affine constraints, projections are the same as linear transforms.

Representability of an optimization paradigm

Given a family \mathcal{S} of sets defined by an optimization family (e.g., mixed-integer linear programs), we say that a set $X \subseteq \mathbb{R}^{n}$ is representable by \mathcal{S} if there exists $S \in \mathcal{S}$ and a linear transformation T such that $X=T(S)$.

We say that X is rationally representable by \mathcal{S} if $S \in \mathcal{S}$ is described by rational data and T can be represented by a rational matrix.

Representability of an optimization paradigm

Given a family \mathcal{S} of sets defined by an optimization family (e.g., mixed-integer linear programs), we say that a set $X \subseteq \mathbb{R}^{n}$ is representable by \mathcal{S} if there exists $S \in \mathcal{S}$ and a linear transformation T such that $X=T(S)$.

Classic Example: Representability of Linear Programs

\mathcal{S} is the family of sets given by the intersection of finitely many linear inequalities (halfspaces).

Representability of an optimization paradigm

Given a family \mathcal{S} of sets defined by an optimization family (e.g., mixed-integer linear programs), we say that a set $X \subseteq \mathbb{R}^{n}$ is representable by \mathcal{S} if there exists $S \in \mathcal{S}$ and a linear transformation T such that $X=T(S)$.

Classic Example: Representability of Linear Programs
\mathcal{S} is the family of sets given by the intersection of finitely many linear inequalities (halfspaces).

THEOREM (Fourier-Motzkin+Minkowski-Weyl): $X \subseteq \mathbb{R}^{n}$ is representable by \mathcal{S} if and only if $X=\operatorname{conv}(V)+\operatorname{cone}(R)$ for finite sets $V, R \subseteq \mathbb{R}^{n}$.

Representability of Mixed-Integer Linear Programs

\mathcal{S} is the family of sets defined as the mixed-integer points in a polyhedron.

Representability of Mixed-Integer Linear Programs

\mathcal{S} is the family of sets defined as the mixed-integer points in a polyhedron.

Observation 1: X may be representable by \mathcal{S} and yet not be in \mathcal{S}.

Representability of Mixed-Integer Linear Programs

\mathcal{S} is the family of sets defined as the mixed-integer points in a polyhedron.

Observation 1: X may be representable by \mathcal{S} and yet not be in \mathcal{S}.

Can $[1,2] \cup[3,4]$ be the feasible region of a mixed-integer program?

Representability of Mixed-Integer Linear Programs

\mathcal{S} is the family of sets defined as the mixed-integer points in a polyhedron.

Observation 1: X may be representable by \mathcal{S} and yet not be in \mathcal{S}.

Can $[1,2] \cup[3,4]$ be the feasible region of a mixed-integer program?

No

Representability of Mixed-Integer Linear Programs

\mathcal{S} is the family of sets defined as the mixed-integer points in a polyhedron.

Observation 1: X may be representable by \mathcal{S} and yet not be in \mathcal{S}.

Can $[1,2] \cup[3,4]$ be the feasible region of a mixed-integer program?

No, unless we allow projections.

Representability of Mixed-Integer Linear Programs

\mathcal{S} is the family of sets defined as the mixed-integer points in a polyhedron.

Observation 1: X may be representable by \mathcal{S} and yet not be in \mathcal{S}.

Observation 2: X representable by \mathcal{S} may not be topologically closed.

Representability of Mixed-Integer Linear Programs

\mathcal{S} is the family of sets defined as the mixed-integer points in a polyhedron.

Observation 1: X may be representable by \mathcal{S} and yet not be in \mathcal{S}.

Observation 2: X representable by \mathcal{S} may not be topologically closed.

$$
X=\left\{x \in \mathbb{R}: \begin{array}{l}
x=\sqrt{2} z_{1}-z_{2} \\
z_{1}, z_{2} \in \mathbb{Z}_{+}
\end{array}\right\}
$$

Representability of Mixed-Integer Linear Programs

\mathcal{S} is the family of sets defined as the mixed-integer points in a polyhedron.

Observation 1: X may be representable by \mathcal{S} and yet not be in \mathcal{S}.
Observation 2: X representable by \mathcal{S} may not be topologically closed.

THEOREM (Jeroslow-Lowe MPS 1984): $X \subseteq \mathbb{R}^{n}$ is rationally representable by \mathcal{S} if and only if

$$
X=\left(\bigcup_{i=1}^{k} P_{i}\right)+\operatorname{int} . c o n e\left\{r^{1}, \ldots, r^{t}\right\}
$$

where P_{1}, \ldots, P_{k} are rational polytopes and r^{1}, \ldots, r^{t} are integral vectors.

Representability of Mixed-Integer Linear Programs

 \mathcal{S} is the family of sets defined as the mixed-integer points in a polyhedron.THEOREM (Jeroslow-Lowe MPS 1984): $X \subseteq \mathbb{R}^{n}$ is rationally representable by \mathcal{S} if and only if

$$
X=\left(\bigcup_{i=1}^{k} P_{i}\right)+\operatorname{int} . c o n e\left\{r^{1}, \ldots, r^{t}\right\}
$$

where P_{1}, \ldots, P_{k} are rational polytopes and r^{1}, \ldots, r^{t} are integral vectors.

Representability of Mixed-Integer Linear Programs

THEOREM (Jeroslow-Lowe MPS 1984): $X \subseteq \mathbb{R}^{n}$ is rationally MILP-representable if and only if

$$
X=\underbrace{\left(\bigcup_{i=1}^{k} P_{i}\right)}_{\text {finite union of rational polytopes }}+\underbrace{\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}}_{\text {finitely generated integral monoid }}
$$

Representability of Mixed-Integer Linear Programs

THEOREM (Jeroslow-Lowe MPS 1984): $X \subseteq \mathbb{R}^{n}$ is rationally MILP-representable if and only if

$$
X=\underbrace{\left(\bigcup_{i=1}^{k} P_{i}\right)}+\underbrace{\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}}_{\text {finitely generated integral monoid }}
$$

LEMMA: Let C be a closed convex set with a rational, polyhedral recession cone generated by integral vectors r^{1}, \ldots, r^{t}, expressed as $C=K+\operatorname{cone}\left\{r^{1}, \ldots, r^{t}\right\}$ for some compact, convex set K. Then
$C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\left((K+\Pi) \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)\right)+$ int.cone $\left\{r^{1}, \ldots, r^{t}\right\}$,
where $\Pi=\left\{\sum_{i=1}^{k} \lambda_{i} r^{i}: 0 \leq \lambda_{i} \leq 1\right\}$.

Representability of Mixed-Integer Linear Programs

LEMMA: Let C be a closed convex set with a rational, polyhedral recession cone generated by integral vectors r^{1}, \ldots, r^{t}, expressed as $C=K+\operatorname{cone}\left\{r^{1}, \ldots, r^{t}\right\}$ for some compact, convex set K. Then

$$
C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\left((K+\Pi) \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)\right)+\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}
$$

where $\Pi=\left\{\sum_{i=1}^{k} \lambda_{i} r^{i}: 0 \leq \lambda_{i} \leq 1\right\}$.
Proof of LEMMA: Any $(x, y) \in C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)$ can be written as

$$
\begin{aligned}
(x, y) & =(\bar{x}, \bar{y})+\sum_{i=1}^{k} \mu_{i} r^{i} \\
& =(\bar{x}, \bar{y})+\sum_{i=1}^{k}\left(\mu_{i}-\left\lfloor\mu_{i}\right\rfloor\right) r^{i}+\sum_{i=1}^{k}\left\lfloor\mu_{i}\right\rfloor r^{i}
\end{aligned}
$$

where $(\bar{x}, \bar{y}) \in K$ and $\mu_{1}, \ldots, \mu_{t} \geq 0$. Observe that

$$
(\bar{x}, \bar{y})+\sum_{i=1}^{k}\left(\mu_{i}-\left\lfloor\mu_{i}\right\rfloor\right) r^{i} \in \mathbb{Z}^{n} \times \mathbb{R}^{d}
$$

Representability of Mixed-Integer Linear Programs

THEOREM (Jeroslow-Lowe MPS 1984): $X \subseteq \mathbb{R}^{n}$ is rationally MILP-representable if and only if

$$
X=\underbrace{\left(\bigcup_{i=1}^{k} P_{i}\right)}+\underbrace{\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}}_{\text {finitely generated integral monoid }}
$$

LEMMA: Let C be a closed convex set with a rational, polyhedral recession cone generated by integral vectors r^{1}, \ldots, r^{t}, expressed as $C=K+\operatorname{cone}\left\{r^{1}, \ldots, r^{t}\right\}$ for some compact, convex set K. Then
$C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\left((K+\Pi) \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)\right)+$ int.cone $\left\{r^{1}, \ldots, r^{t}\right\}$,
where $\Pi=\left\{\sum_{i=1}^{k} \lambda_{i} r^{i}: 0 \leq \lambda_{i} \leq 1\right\}$.

Representability of Mixed-Integer Linear Programs

THEOREM (Jeroslow-Lowe MPS 1984): $X \subseteq \mathbb{R}^{n}$ is rationally MILP-representable if and only if

$$
X=\underbrace{\left(\bigcup_{i=1}^{k} P_{i}\right)}+\underbrace{\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}}_{\text {finitely generated integral monoid }}
$$

finite union of rational polytopes

Assume $P_{i}=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq b^{i}\right\}$. Then

$$
X=\left\{\begin{aligned}
x= & x^{1}+\ldots+x^{k}+\mu_{1} r^{i}+\ldots \mu_{t} r^{t} \\
& A^{i} x^{i} \leq \delta_{i} b^{i} \\
x \in \mathbb{R}^{n}: \quad & \delta_{1}+\ldots+\delta_{k}=1 \\
& \delta \in \mathbb{Z}_{+}^{k}, \mu \in \mathbb{Z}_{+}^{t}
\end{aligned}\right\}
$$

An alternate algebraic characterization?

An alternate algebraic characterization?

The family of Chvátal functions is the smallest family \mathcal{F} of functions from \mathbb{R}^{n} to \mathbb{R} that contains all affine linear functions and is closed under
(i) finite nonnegative combinations, i.e.,

$$
f, g \in \mathcal{F}, \lambda, \gamma \geq 0 \Rightarrow \lambda f+\gamma g \in \mathcal{F}, \text { and }
$$

(ii) the operation of taking floors, i.e., $f \in \mathcal{F} \Rightarrow\lfloor f\rfloor \in \mathcal{F}$

An alternate algebraic characterization?

The family of Chvátal functions is the smallest family \mathcal{F} of functions from \mathbb{R}^{n} to \mathbb{R} that contains all affine linear functions and is closed under
(i) finite nonnegative combinations, i.e.,

$$
f, g \in \mathcal{F}, \lambda, \gamma \geq 0 \Rightarrow \lambda f+\gamma g \in \mathcal{F}, \text { and }
$$

(ii) the operation of taking floors, i.e., $f \in \mathcal{F} \Rightarrow\lfloor f\rfloor \in \mathcal{F}$

THEOREM (Basu-Ryan-Martin-Wang IPCO 2017): A set $X \subseteq \mathbb{R}^{n}$ is rationally MILP-representable if and only if

$$
X=\left\{\begin{array}{cc}
& f_{1}(x) \geq 0 \\
x \in \mathbb{R}^{n}: & \vdots \\
& f_{k}(x) \geq 0
\end{array}\right\}
$$

where f_{1}, \ldots, f_{k} are rational Chvátal functions.

An alternate algebraic characterization?

THEOREM (Basu-Ryan-Martin-Wang IPCO 2017): A set $X \subseteq \mathbb{R}^{n}$ is rationally MILP-representable if and only if

$$
x=\left\{\begin{array}{c}
\\
f_{1}(x) \geq 0 \\
x \in \mathbb{R}^{n}: \\
\\
\\
f_{k}(x) \geq 0
\end{array}\right\}
$$

where f_{1}, \ldots, f_{k} are rational Chvátal functions.
$[1,2] \cup[3,4]$

An alternate algebraic characterization?

THEOREM (Basu-Ryan-Martin-Wang IPCO 2017): A set $X \subseteq \mathbb{R}^{n}$ is rationally MILP-representable if and only if

$$
x=\left\{\begin{array}{c}
\\
f_{1}(x) \geq 0 \\
x \in \mathbb{R}^{n}: \\
\\
\\
f_{k}(x) \geq 0
\end{array}\right\}
$$

where f_{1}, \ldots, f_{k} are rational Chvátal functions.

$$
[1,2] \cup[3,4]
$$

$$
\left\{x \in \mathbb{R}: \begin{array}{l}
\left\lfloor\frac{x-1}{2}\right\rfloor+\left\lfloor\frac{-x+2}{2}\right\rfloor \geq 0 \\
1 \leq x \leq 4
\end{array}\right\}
$$

Representability of Mixed-Integer Ellipsoidal Regions

DEFINITION: Any set of the form

$$
E=\left\{x \in \mathbb{R}^{d}:(x-c)^{T} M(x-c) \leq \gamma\right\}
$$

where $M \succeq 0, c \in \mathbb{R}^{d}$, and $\gamma>0$, is called an ellipsoidal region. If $M \succ 0$ then E is an ellipsoid.

Representability of Mixed-Integer Ellipsoidal Regions

DEFINITION: Any set of the form

$$
E=\left\{x \in \mathbb{R}^{d}:(x-c)^{T} M(x-c) \leq \gamma\right\}
$$

where $M \succeq 0, c \in \mathbb{R}^{d}$, and $\gamma>0$, is called an ellipsoidal region. If $M \succ 0$ then E is an ellipsoid.

FACT: Any ellipsoidal region E is the Minkowski sum of an ellipsoid and $\operatorname{rec}(E)=\operatorname{ker}(M)$.

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

What can we represent using \mathcal{S} ?

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

What can we represent using \mathcal{S} ? Will again make rationality assumption.

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

What can we represent using \mathcal{S} ? Will again make rationality assumption.

We will call such sets (rationally) Ellipsoidal Mixed-Integer (EMI) representable.

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

THEOREM (Del Pia-Poskin IPCO 2016, MP 2018): A set $X \subseteq \mathbb{R}^{n}$ is rationally EMI-representable if and only if

$$
X=\left(\bigcup_{i=1}^{k}\left(E_{i} \cap P_{i}\right)\right)+\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}
$$

where E_{1}, \ldots, E_{k} are rational ellipsoidal regions, P_{1}, \ldots, P_{k} are rational polytopes, and r^{1}, \ldots, r^{t} are integral vectors.

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

THEOREM (Del Pia-Poskin IPCO 2016, MP 2018): A set $X \subseteq \mathbb{R}^{n}$ is rationally EMI-representable if and only if

$$
X=\left(\bigcup_{i=1}^{k}\left(E_{i} \cap P_{i}\right)\right)+\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}
$$

where E_{1}, \ldots, E_{k} are rational ellipsoidal regions, P_{1}, \ldots, P_{k} are rational polytopes, and r^{1}, \ldots, r^{t} are integral vectors.

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

LEMMA: Let C be a closed convex set with a rational, polyhedral recession cone generated by integral vectors r^{1}, \ldots, r^{t}, expressed as $C=K+\operatorname{cone}\left\{r^{1}, \ldots, r^{t}\right\}$ for some compact, convex set K. Then

$$
C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\left((K+\Pi) \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)\right)+\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}
$$

where $\Pi=\left\{\sum_{i=1}^{k} \lambda_{i} r^{i}: 0 \leq \lambda_{i} \leq 1\right\}$.

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

LEMMA: Let C be a closed convex set with a rational, polyhedral recession cone generated by integral vectors r^{1}, \ldots, r^{t}, expressed as $C=K+\operatorname{cone}\left\{r^{1}, \ldots, r^{t}\right\}$ for some compact, convex set K. Then
$C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\left((K+\Pi) \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)\right)+$ int.cone $\left\{r^{1}, \ldots, r^{t}\right\}$,
where $\Pi=\left\{\sum_{i=1}^{k} \lambda_{i} r^{i}: 0 \leq \lambda_{i} \leq 1\right\}$.

Three issues:

- What is the recession cone of a set of the form $E \cap Q$?
- Is $K+\Pi$ of the form $E \cap P$?
- Is the projection of a set of the form $E \cap P$ again of the form $E^{\prime} \cap P^{\prime}$?

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

LEMMA: Let C be a closed convex set with a rational, polyhedral recession cone generated by integral vectors r^{1}, \ldots, r^{t}, expressed as $C=K+\operatorname{cone}\left\{r^{1}, \ldots, r^{t}\right\}$ for some compact, convex set K. Then

$$
C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\left((K+\Pi) \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)\right)+\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}
$$

where $\Pi=\left\{\sum_{i=1}^{k} \lambda_{i} r^{i}: 0 \leq \lambda_{i} \leq 1\right\}$.

Three issues:

- What is the recession cone of a set of the form $E \cap Q$? Answer: $\operatorname{rec}(E \cap Q)=\operatorname{rec}(E) \cap \operatorname{rec}(Q)$ as long as $E \cap Q \neq \emptyset$.
- Is $K+\Pi$ of the form $E \cap P$?
- Is the projection of a set of the form $E \cap P$ again of the form $E^{\prime} \cap P^{\prime}$?

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

LEMMA: Let C be a closed convex set with a rational, polyhedral recession cone generated by integral vectors r^{1}, \ldots, r^{t}, expressed as $C=K+\operatorname{cone}\left\{r^{1}, \ldots, r^{t}\right\}$ for some compact, convex set K. Then

$$
C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\left((K+\Pi) \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)\right)+\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}
$$

where $\Pi=\left\{\sum_{i=1}^{k} \lambda_{i} r^{i}: 0 \leq \lambda_{i} \leq 1\right\}$.

Three issues:

- What is the recession cone of a set of the form $E \cap Q$?
- Is $K+\Pi$ of the form $E \cap P$? Answer: Yes, if one chooses K carefully. See Del Pia-Poskin paper for details.
- Is the projection of a set of the form $E \cap P$ again of the form $E^{\prime} \cap P^{\prime}$?

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

LEMMA: Let C be a closed convex set with a rational, polyhedral recession cone generated by integral vectors r^{1}, \ldots, r^{t}, expressed as $C=K+\operatorname{cone}\left\{r^{1}, \ldots, r^{t}\right\}$ for some compact, convex set K. Then
$C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\left((K+\Pi) \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)\right)+$ int.cone $\left\{r^{1}, \ldots, r^{t}\right\}$,
where $\Pi=\left\{\sum_{i=1}^{k} \lambda_{i} r^{i}: 0 \leq \lambda_{i} \leq 1\right\}$.

Three issues:

- What is the recession cone of a set of the form $E \cap Q$?
- Is $K+\Pi$ of the form $E \cap P$?
- Is the projection of a set of the form $E \cap P$ again of the form $E^{\prime} \cap P^{\prime}$? I don't know! Main technical difficulty. Del Pia and Poskin show that it is of the form $\bigcup_{i=1}^{k}\left(E_{i} \cap P_{i}\right)$.

Representability of Mixed-Integer Ellipsoidal Regions

\mathcal{S} is the family of sets given by the mixed-integer points in the intersection of an ellipsoidal region and a polyhedron.

THEOREM (Del Pia-Poskin IPCO 2016, MP 2018): A set $X \subseteq \mathbb{R}^{n}$ is rationally EMI-representable if and only if

$$
X=\left(\bigcup_{i=1}^{k}\left(E_{i} \cap P_{i}\right)\right)+\text { int.cone }\left\{r^{1}, \ldots, r^{t}\right\}
$$

where E_{1}, \ldots, E_{k} are rational ellipsoidal regions, P_{1}, \ldots, P_{k} are rational polytopes, and r^{1}, \ldots, r^{t} are integral vectors.

Representability of General Convex Mixed-Integer Sets

\mathcal{S} is the family of sets given by the mixed-integer points in a general closed, convex set.

Representability of General Convex Mixed-Integer Sets

\mathcal{S} is the family of sets given by the mixed-integer points in a general closed, convex set.

- Lubin, Zadik and Vielma attack this in a IPCO 2017 paper.

Representability of General Convex Mixed-Integer Sets

\mathcal{S} is the family of sets given by the mixed-integer points in a general closed, convex set.

- Lubin, Zadik and Vielma attack this in a IPCO 2017 paper.
- Battle with irrationality gets severe.

Representability of General Convex Mixed-Integer Sets

\mathcal{S} is the family of sets given by the mixed-integer points in a general closed, convex set.

- Lubin, Zadik and Vielma attack this in a IPCO 2017 paper.
- Battle with irrationality gets severe.
- LEMMA: Let C be a closed convex set with a rational, polyhedral recession cone generated by integral vectors r^{1}, \ldots, r^{t}, expressed as $C=K+$ cone $\left\{r^{1}, \ldots, r^{t}\right\}$ for some compact, convex set K. Then

$$
\begin{aligned}
& C \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)=\left((K+\Pi) \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{d}\right)\right)+\operatorname{int} . c o n e\left\{r^{1}, \ldots, r^{t}\right\} \\
& \text { where } \Pi=\left\{\sum_{i=1}^{k} \lambda_{i} r^{i}: 0 \leq \lambda_{i} \leq 1\right\}
\end{aligned}
$$

Representability of General Convex Mixed-Integer Sets

\mathcal{S} is the family of sets given by the mixed-integer points in a general closed, convex set.

THEOREM (Lubin, Zadik, Vielma IPCO 2017): Let $X \subseteq \mathbb{R}^{n}$. If there exists an infinite subset $R \subseteq X$ such that for all $x, y \in R$ such that $\frac{x+y}{2} \notin X$, then X is not representable by \mathcal{S}.

Representability of General Convex Mixed-Integer Sets

\mathcal{S} is the family of sets given by the mixed-integer points in a general closed, convex set.

THEOREM (Lubin, Zadik, Vielma IPCO 2017): Let $X \subseteq \mathbb{R}^{n}$. If there exists an infinite subset $R \subseteq X$ such that for all $x, y \in R$ such that $\frac{x+y}{2} \notin X$, then X is not representable by \mathcal{S}. (The authors call such sets X strongly nonconvex.)

Representability of General Convex Mixed-Integer Sets

\mathcal{S} is the family of sets given by the mixed-integer points in a general closed, convex set.

THEOREM (Lubin, Zadik, Vielma IPCO 2017): Let $X \subseteq \mathbb{R}^{n}$. If there exists an infinite subset $R \subseteq X$ such that for all $x, y \in R$ such that $\frac{x+y}{2} \notin X$, then X is not representable by \mathcal{S}. (The authors call such sets X strongly nonconvex.)

LEMMA (Lubin, Zadik, Vielma IPCO 2017): The primes, as a subset of \mathbb{R}, form a strongly nonconvex set.

Representability of General Convex Mixed-Integer Sets

\mathcal{S} is the family of sets given by the mixed-integer points in a general closed, convex set.

THEOREM (Lubin, Zadik, Vielma IPCO 2017): Let $X \subseteq \mathbb{R}^{n}$. If there exists an infinite subset $R \subseteq X$ such that for all $x, y \in R$ such that $\frac{x+y}{2} \notin X$, then X is not representable by \mathcal{S}. (The authors call such sets X strongly nonconvex.)

LEMMA (Lubin, Zadik, Vielma IPCO 2017): The primes, as a subset of \mathbb{R}, form a strongly nonconvex set.

COROLLARY (Lubin, Zadik, Vielma IPCO 2017): The primes are not representable by \mathcal{S}.

Representability of Bilevel Optimization Problems

Representability of Bilevel Optimization Problems

\mathcal{S} is the family of sets given by sets of the form

$$
\left\{\begin{array}{ll}
A x+B y \leq b & \\
(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \quad y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{Z}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\} \\
x_{i} \in \mathbb{Z}, \quad i \in I \subseteq\{1, \ldots, m\}
\end{array}\right\}
$$

Representability of Bilevel Optimization Problems

\mathcal{S} is the family of sets given by sets of the form

$$
\left\{\begin{array}{ll}
& A x+B y \leq b \\
(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: & y \in \arg \max \left\{c^{\top} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{Z}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\} \\
x_{i} \in \mathbb{Z}, \quad i \in I \subseteq\{1, \ldots, m\}
\end{array}\right\}
$$

We say that a set $X \subseteq \mathbb{R}^{n}$ is mixed-integer bilevel representable if there exists $S \in \mathcal{S}$ and a linear transformation T such that $X=T(S)$.

Representability of Bilevel Optimization Problems

\mathcal{S} is the family of sets given by sets of the form

$$
\left\{\begin{array}{ll}
A x+B y \leq b & \\
(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: & y \in \arg \max \left\{c^{\top} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{Z}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\} \\
x_{i} \in \mathbb{Z}, \quad i \in I \subseteq\{1, \ldots, m\}
\end{array}\right\}
$$

We say that a set $X \subseteq \mathbb{R}^{n}$ is mixed-integer bilevel representable if there exists $S \in \mathcal{S}$ and a linear transformation T such that $X=T(S)$.

Rationality will play a role again.

Without integrality constraints first

$\tilde{\mathcal{S}}$ is the family of sets given by sets of the form

$$
\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{\top} y: \begin{array}{l}
D y \leq d-C x, \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\}
$$

Without integrality constraints first

$\tilde{\mathcal{S}}$ is the family of sets given by sets of the form

$$
\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x, \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\}
$$

Define the value function

$$
V(x):=\max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d}
\end{array}\right\}
$$

Without integrality constraints first

$\tilde{\mathcal{S}}$ is the family of sets given by sets of the form

$$
\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x, \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\}
$$

Define the value function

$$
\begin{aligned}
V(x) & :=\max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d}
\end{array}\right\} \\
& =\min \left\{u^{T}(d-C x): \begin{array}{l}
u^{T} D=c^{T} \\
u \geq 0
\end{array}\right\}
\end{aligned}
$$

Without integrality constraints first

$\tilde{\mathcal{S}}$ is the family of sets given by sets of the form

$$
\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\}
$$

Define the value function

$$
\begin{aligned}
V(x) & :=\max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d}
\end{array}\right\} \\
& =\min \left\{u^{T}(d-C x): \begin{array}{l}
u^{T} D=c^{T}, \\
u \geq 0
\end{array}\right\} \\
& =\min _{u_{1}, \ldots, u_{p}}\left\{u_{i}^{T}(d-C x)\right\}
\end{aligned}
$$

Without integrality constraints first

Define the value function

$$
\begin{aligned}
V(x) & :=\max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d}
\end{array}\right\} \\
& =\min _{u_{1}, \ldots, u_{p}}\left\{u_{i}^{T}(d-C x)\right\}
\end{aligned}
$$

$$
\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\}
$$

Without integrality constraints first

Define the value function

$$
\left.\left.\begin{array}{rl}
V(x) & :=\max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d}
\end{array}\right\} \\
& =\min _{u_{1}, \ldots, u_{p}}\left\{u_{i}^{T}(d-C x)\right\}
\end{array}\right\}, \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\}
$$

Without integrality constraints first

Define the value function

$$
\begin{aligned}
& V(x):=\max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x, \\
y \in \mathbb{R}^{d}
\end{array}\right\} \\
& =\min _{u_{1}, \ldots, u_{p}}\left\{u_{i}^{T}(d-C X)\right\} \\
& \left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x, \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
c^{T} y \geq \min _{u_{1}, \ldots, u_{p}}\left\{u_{i}^{T}(d-C x)\right\}
\end{array}\right\}
\end{aligned}
$$

Without integrality constraints first

Define the value function

$$
\begin{gathered}
V(x):=\max \left\{\begin{array}{l}
\left.c^{T} y: \begin{array}{l}
D y \leq d-C x, \\
y \in \mathbb{R}^{d}
\end{array}\right\} \\
=\min _{u_{1}, \ldots, u_{p}}\left\{u_{i}^{T}(d-C x)\right\}
\end{array}\right. \\
\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\} \\
=\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
c^{T} y \geq \min _{u_{1}, \ldots, u_{p}}\left\{u_{i}^{T}(d-C x)\right\}
\end{array}\right\} \\
= \\
\bigcup_{i=1}^{p}\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
c^{T} y \geq u_{i}^{T} d-u_{i}^{T} C x
\end{array}\right\}
\end{gathered}
$$

Without integrality constraints first

$$
\begin{aligned}
& \left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x, \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\} \\
= & \bigcup_{i=1}^{p}\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
c^{T} y \geq u_{i}^{T} d-u_{i}^{T} C x
\end{array}\right\}
\end{aligned}
$$

THEOREM (Basu-Ryan-Sankaranarayanan 2018): A set $X \subseteq \mathbb{R}^{n}$ is continuous bilevel representable if and only if X is a finite union of polyhedra.

Without integrality constraints first

Continuous Bilevel Optimization

$$
\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x, \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\}
$$

Linear Complementarity Problem

$$
\left\{x \in \mathbb{R}^{n}: \begin{array}{c}
A x \leq b \\
0 \leq x \perp M x+q \geq 0
\end{array}\right\}
$$

THEOREM (Basu-Ryan-Sankaranarayanan 2018): A set $X \subseteq \mathbb{R}^{n}$ is continuous bilevel representable if and only if X is a finite union of polyhedra.

Without integrality constraints first

Continuous Bilevel Optimization

$$
\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \begin{array}{l}
A x+B y \leq b \\
y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\}
\end{array}\right\}
$$

Linear Complementarity Problem

$$
\left\{x \in \mathbb{R}^{n}: \begin{array}{c}
A x \leq b \\
0 \leq x \perp M x+q \geq 0
\end{array}\right\}
$$

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let $X \subseteq \mathbb{R}^{n}$. Then the following are equivalent:
(i) X is continuous bilevel representable.
(ii) X is linear complementarity representable.
(iii) X is a finite union of polyhedra.

Add the integrality constraints

Add the integrality constraints

Observation 1: If the integrality is added only in the upper level, then we get a union of MILP-representable sets.

$$
\left\{\begin{array}{cl}
A x+B y \leq b \\
(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: & y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{R}^{d}
\end{array}\right\} \\
x_{i} \in \mathbb{Z}, \quad i \in I \subseteq\{1, \ldots, m\}
\end{array}\right\}
$$

COROLLARY (Basu-Ryan-Sankaranarayanan 2018): A set $X \subseteq \mathbb{R}^{n}$ is upper level integer bilevel representable if and only if X is a finite union of MILP-representable sets.

Add the integrality constraints

Observation 1: If the integrality is added only in the upper level, then we get a union of MILP-representable sets.

Observation 2: If the integrality is added in the lower level, then we may get a set that is not topologically closed even under rational data.

Add the integrality constraints

Observation 1: If the integrality is added only in the upper level, then we get a union of MILP-representable sets.

Observation 2: If the integrality is added in the lower level, then we may get a set that is not topologically closed even under rational data.

EXAMPLE (Ryan-Koeppe-Queyranne JOTA 2010):

$$
\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: \begin{array}{l}
0 \leq x \leq 1 \\
y \in \arg \max \left\{\begin{array}{l}
y \leq x \\
y: \\
0 \leq y \leq 1 \\
y \in \mathbb{Z}
\end{array}\right\}
\end{array}\right\}
$$

Add the integrality constraints

Mixed-Integer Bilevel Optimization

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let $X \subseteq \mathbb{R}^{n}$. Then $X=\mathbf{c l}(S)$ for some $S \subseteq \mathbb{R}^{n}$ that is rational mixed-integer bilevel representable if and only if X is a finite union of rationally MILP-representable sets.

Add the integrality constraints

Mix, CAUTION: A finite union of MILP-representable sets is not necessarily MILP-representable.

THE

MIL

Proof of Main Theorem

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let $X \subseteq \mathbb{R}^{n}$. Then $X=\mathbf{c l}(S)$ for some $S \subseteq \mathbb{R}^{n}$ that is rationally mixed-integer bilevel representable if and only if X is a finite union of rationally MILP-representable sets.

Proof of Main Theorem

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let $X \subseteq \mathbb{R}^{n}$. Then $X=\mathbf{c l}(S)$ for some $S \subseteq \mathbb{R}^{n}$ that is rationally mixed-integer bilevel representable if and only if X is a finite union of rationally MILP-representable sets.

Proof of Main Theorem

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let $X \subseteq \mathbb{R}^{n}$. Then $X=\mathbf{c l}(S)$ for some $S \subseteq \mathbb{R}^{n}$ that is rationally mixed-integer bilevel representable if and only if X is a finite union of rationally MILP-representable sets.

PROOF:

$$
\left\{\begin{array}{l}
A x+B y \leq b \\
(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \quad y \in \arg \max \left\{c^{T} y: \begin{array}{l}
D y \leq d-C x \\
y \in \mathbb{Z}_{d_{1}} \times \mathbb{R}^{d_{2}}
\end{array}\right\} \\
x_{i} \in \mathbb{Z}, \quad i \in I \subseteq\{1, \ldots, m\}
\end{array}\right\}
$$

Proof of Main Theorem

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let $X \subseteq \mathbb{R}^{n}$. Then $X=\mathbf{c l}(S)$ for some $S \subseteq \mathbb{R}^{n}$ that is rationally mixed-integer bilevel representable if and only if X is a finite union of rationally MILP-representable sets.

PROOF:

$$
\left\{\begin{array}{ll}
& A x+B y \leq b \\
(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: & c^{T} y \geq J(x) \\
& x_{i} \in \mathbb{Z}, \quad i \in I \subseteq\{1, \ldots, m\}
\end{array}\right\}
$$

where $J(x)$ is the value function of a rational mixed-integer linear program.

Proof of Main Theorem

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let $X \subseteq \mathbb{R}^{n}$. Then $X=\mathbf{c l}(S)$ for some $S \subseteq \mathbb{R}^{n}$ that is rationally mixed-integer bilevel representable if and only if X is a finite union of rationally MILP-representable sets.

THEOREM (Blair/Jeroslow 1977, 1979, 1995): The value function of a rational MILP is of the form

$$
J(x)=\max _{i \in I}\left\{w_{i}^{T}\left(x-E_{i}\left\lfloor E_{i}^{-1} x\right\rfloor\right)+\min _{j \in J} \psi_{j}\left(E_{i}\left\lfloor E_{i}^{-1} x\right\rfloor\right)\right\}
$$

where I, J are finite index sets, $E_{i}, i \in I$ are invertible matrices, and $\psi_{j}, j \in J$ are Chvátal functions. Such functions are called Jeroslow functions.

Proof of Main Theorem

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let $X \subseteq \mathbb{R}^{n}$. Then $X=\mathbf{c l}(S)$ for some $S \subseteq \mathbb{R}^{n}$ that is rationally mixed-integer bilevel representable if and only if X is a finite union of rationally MILP-representable sets.

PROOF:

$$
\left\{\begin{array}{ll}
& A x+B y \leq b \\
(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: & c^{T} y \geq J(x) \\
& x_{i} \in \mathbb{Z}, \quad i \in I \subseteq\{1, \ldots, m\}
\end{array}\right\}
$$

where $J(x)$ is the value function of a rational mixed-integer linear program.

Bottomline: Need to analyze sub/super level sets of Chvátal functions.

Proof of Main Theorem

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let $X \subseteq \mathbb{R}^{n}$. Then $X=\mathbf{c l}(S)$ for some $S \subseteq \mathbb{R}^{n}$ that is rationally mixed-integer bilevel representable if and only if X is a finite union of rationally MILP-representable sets.

PROOF:

$$
\left\{\begin{array}{ll}
& A x+B y \leq b \\
(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{d}: \quad c^{T} y \geq J(x) \\
& x_{i} \in \mathbb{Z}, \quad i \in I \subseteq\{1, \ldots, m\}
\end{array}\right\}
$$

where $J(x)$ is the value function of a rational mixed-integer linear program.
PROPOSITION (Basu-Ryan-Sankaranarayanan 2018): Let $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a rational Chvátal function. Then the closures of $\left\{x \in \mathbb{R}^{n}: \psi(x) \geq 0\right\},\left\{x \in \mathbb{R}^{n}: \psi(x) \leq 0\right\}$, and $\left\{x \in \mathbb{R}^{n}: \psi(x)=0\right\}$ are all finite unions of MILP-representable sets.

Sub/super level sets of Chvátal functions

PROPOSITION (Basu-Ryan-Sankaranarayanan 2018): Let $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a rational Chvátal function. Then the closures of $\left\{x \in \mathbb{R}^{n}: \psi(x) \geq 0\right\},\left\{x \in \mathbb{R}^{n}: \psi(x) \leq 0\right\}$, and $\left\{x \in \mathbb{R}^{n}: \psi(x)=0\right\}$ are all finite unions of MILP-representable sets.

Sub/super level sets of Chvátal functions

PROPOSITION (Basu-Ryan-Sankaranarayanan 2018): Let $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a rational Chvátal function. Then the closures of $\left\{x \in \mathbb{R}^{n}: \psi(x) \geq 0\right\},\left\{x \in \mathbb{R}^{n}: \psi(x) \leq 0\right\}$, and $\left\{x \in \mathbb{R}^{n}: \psi(x)=0\right\}$ are all finite unions of MILP-representable sets.

Recall algebraic characterization of MILP-representable sets: $\left\{x \in \mathbb{R}^{n}: \psi(x) \geq 0\right\}$ is a rational MILP-representable set.

Sub/super level sets of Chvátal functions

PROPOSITION (Basu-Ryan-Sankaranarayanan 2018): Let $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a rational Chvátal function. Then the closures of $\left\{x \in \mathbb{R}^{n}: \psi(x) \geq 0\right\},\left\{x \in \mathbb{R}^{n}: \psi(x) \leq 0\right\}$, and $\left\{x \in \mathbb{R}^{n}: \psi(x)=0\right\}$ are all finite unions of MILP-representable sets.

Recall algebraic characterization of MILP-representable sets: $\left\{x \in \mathbb{R}^{n}: \psi(x) \geq 0\right\}$ is a rational MILP-representable set.

Suffices to show that $\left\{x \in \mathbb{R}^{n}: \psi(x) \leq 0\right\}$ is a finite union of rationally MILP-representable sets (up to closures).

Sub/super level sets of Chvátal functions

PROPOSITION (Basu-Ryan-Sankaranarayanan 2018): Let
$\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a rational Chvátal function. Then the closures of $\left\{x \in \mathbb{R}^{n}: \psi(x) \geq 0\right\},\left\{x \in \mathbb{R}^{n}: \psi(x) \leq 0\right\}$, and $\left\{x \in \mathbb{R}^{n}: \psi(x)=0\right\}$ are all finite unions of MILP-representable sets.

Recall algebraic characterization of MILP-representable sets: $\left\{x \in \mathbb{R}^{n}: \psi(x) \geq 0\right\}$ is a rational MILP-representable set.

Suffices to show that $\left\{x \in \mathbb{R}^{n}: \psi(x) \leq 0\right\}$ is a finite union of rationally MILP-representable sets (up to closures).

Boils down to checking the following
LEMMA (Basu-Ryan-Sankaranarayanan 2018): Let X be a rational MILP-representable set. Then the complement of X is a finite union of rational MILP-representable sets (up to closures).

Complement of MILP-representable set

LEMMA (Basu-Ryan-Sankaranarayanan 2018): Let X be a rational MILP-representable set. Then the complement of X is a finite union of rational MILP-representable sets (up to closures).

Need to analyze

$$
\left(\bigcup_{i=1}^{k} P_{i}+M\right)^{c}
$$

Complement of MILP-representable set

LEMMA (Basu-Ryan-Sankaranarayanan 2018): Let X be a rational MILP-representable set. Then the complement of X is a finite union of rational MILP-representable sets (up to closures).

Need to analyze

$$
\left(\bigcup_{i=1}^{k} P_{i}+M\right)^{c}=\left(\bigcup_{i=1}^{k}\left(P_{i}+M\right)\right)^{c}=\bigcap_{i=1}^{k}\left(P_{i}+M\right)^{c}
$$

Since intersection of MILP-representable sets are MILP-representable sets, it suffices to show that given any polytope P and a finitely generated integral monoid M, the set $(P+M)^{c}$ is a finite union of rationally MILP-representable sets (up to closures).

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

First consider the case when M is generated by a linearly independent set of vectors.

$(P+M)^{c}$ is MILP-representable

What if the finitely generated monoid M is not generated by linearly independent vectors?

$(P+M)^{c}$ is MILP-representable

What if the finitely generated monoid M is not generated by linearly independent vectors?

- Consider $C=\operatorname{cone}(M)$. Write $C=\bigcup_{i=1}^{k} C_{i}$ where C_{i} are simplicial. Extreme rays of C_{i} are in M. Define $M_{i}=C_{i} \cap M$. Note that $M=\bigcup_{i=1}^{k} M_{i}$.

$(P+M)^{c}$ is MILP-representable

What if the finitely generated monoid M is not generated by linearly independent vectors?

- Consider $C=\operatorname{cone}(M)$. Write $C=\bigcup_{i=1}^{k} C_{i}$ where C_{i} are simplicial. Extreme rays of C_{i} are in M. Define $M_{i}=C_{i} \cap M$. Note that $M=\bigcup_{i=1}^{k} M_{i}$.

$(P+M)^{c}$ is MILP-representable

What if the finitely generated monoid M is not generated by linearly independent vectors?

- Consider $C=\operatorname{cone}(M)$. Write $C=\bigcup_{i=1}^{k} C_{i}$ where C_{i} are simplicial. Extreme rays of C_{i} are in M. Define $M_{i}=C_{i} \cap M$. Note that $M=\bigcup_{i=1}^{k} M_{i}$.
- By results of Jeroslow 1978, each M_{i} can be written as a finite union of monoids whose generators are extreme rays of C_{i}.

$(P+M)^{c}$ is MILP-representable

What if the finitely generated monoid M is not generated by linearly independent vectors?

- Consider $C=\operatorname{cone}(M)$. Write $C=\bigcup_{i=1}^{k} C_{i}$ where C_{i} are simplicial. Extreme rays of C_{i} are in M. Define $M_{i}=C_{i} \cap M$. Note that $M=\bigcup_{i=1}^{k} M_{i}$.
- By results of Jeroslow 1978, each M_{i} can be written as a finite union of monoids whose generators are extreme rays of C_{i}.
- But since C_{i} are constructed to be simplicial, extreme rays of C_{i} are linearly independent. So each M_{i} is a finite union of monoids that are linearly independent.

Open Questions

- Sizes of bilevel formulations: Is there a MILP-representable subset of \mathbb{R}^{n} that needs exponential (in n) sized MILP formulations, but has a polynomial size mixed-integer bilevel formulation? Can be asked about the hierarchy of n-level mixed-integer formulations.
- Representability of mixed-integer points in intersections of convex quadratic constraints.

THANK YOU!

Questions/Comments ?

[^0]:

