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What exactly do specific optimization paradigms model?

x ∈ Rn :

f1(x , z) ≤ 0
...

fk(x , z) ≤ 0





What exactly do specific optimization paradigms model?

{
x ∈ R|E | :

Ax + Bz ≤ b
x , z mixed-integer

}
EXAMPLE: Miller, Tucker, Zemlin TSP formulation
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Representability of an optimization paradigm

Given a family S of sets defined by an optimization family (e.g.,
mixed-integer linear programs), we say that a set X ⊆ Rn is
representable by S if there exists S ∈ S and a linear transformation
T such that X = T (S).
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representable by S if there exists S ∈ S and a linear transformation
T such that X = T (S).

X = T (S) = {x ∈ Rn : x = T (s), s ∈ S}

As long as the family S is closed under addition of affine
constraints, projections are the same as linear transforms.
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Representability of an optimization paradigm

Given a family S of sets defined by an optimization family (e.g.,
mixed-integer linear programs), we say that a set X ⊆ Rn is
representable by S if there exists S ∈ S and a linear transformation
T such that X = T (S).

Classic Example: Representability of Linear Programs

S is the family of sets given by the intersection of finitely many
linear inequalities (halfspaces).

THEOREM (Fourier-Motzkin+Minkowski-Weyl): X ⊆ Rn is
representable by S if and only if X = conv(V ) + cone(R) for finite
sets V ,R ⊆ Rn.
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Representability of Mixed-Integer Linear Programs

S is the family of sets defined as the mixed-integer points in a
polyhedron.

Observation 1: X may be representable by S and yet not be in S.

Can [1, 2]∪ [3, 4] be the feasible region of a mixed-integer program?

No, unless we allow projections.
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S is the family of sets defined as the mixed-integer points in a
polyhedron.

Observation 1: X may be representable by S and yet not be in S.

Observation 2: X representable by S may not be topologically
closed.

X =

{
x ∈ R :

x =
√

2z1 − z2,
z1, z2 ∈ Z+

}



Representability of Mixed-Integer Linear Programs

S is the family of sets defined as the mixed-integer points in a
polyhedron.

Observation 1: X may be representable by S and yet not be in S.

Observation 2: X representable by S may not be topologically
closed.

THEOREM (Jeroslow-Lowe MPS 1984): X ⊆ Rn is rationally
representable by S if and only if

X =

(
k⋃

i=1

Pi

)
+ int.cone{r1, . . . , r t},

where P1, . . . ,Pk are rational polytopes and r1, . . . , r t are integral
vectors.
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LEMMA: Let C be a closed convex set with a rational, polyhedral
recession cone generated by integral vectors r1, . . . , r t , expressed as
C = K + cone{r1, . . . , r t} for some compact, convex set K . Then

C ∩ (Zn × Rd) =
(

(K + Π) ∩ (Zn × Rd)
)

+ int.cone{r1, . . . , r t},

where Π = {
∑k

i=1 λi r
i : 0 ≤ λi ≤ 1}.

Proof of LEMMA: Any (x , y) ∈ C ∩ (Zn × Rd) can be written as

(x , y) = (x̄ , ȳ) +
∑k

i=1 µi r
i

= (x̄ , ȳ) +
∑k

i=1(µi − bµic)r i +
∑k

i=1bµicr i

where (x̄ , ȳ) ∈ K and µ1, . . . , µt ≥ 0. Observe that

(x̄ , ȳ) +
k∑

i=1

(µi − bµic)r i ∈ Zn × Rd .
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Representability of Mixed-Integer Linear Programs

THEOREM (Jeroslow-Lowe MPS 1984): X ⊆ Rn is rationally
MILP-representable if and only if

X =

(
k⋃

i=1

Pi

)
︸ ︷︷ ︸

finite union of rational polytopes

+ int.cone{r1, . . . , r t}︸ ︷︷ ︸
finitely generated integral monoid

Assume Pi = {x ∈ Rn : Aix ≤ bi}. Then

X =

x ∈ Rn :

x = x1 + . . .+ xk + µ1r
i + . . . µtr

t

Aix i ≤ δibi
δ1 + . . .+ δk = 1
δ ∈ Zk

+, µ ∈ Zt
+
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(i) finite nonnegative combinations, i.e.,
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(ii) the operation of taking floors, i.e., f ∈ F ⇒ bf c ∈ F
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An alternate algebraic characterization?

THEOREM (Basu-Ryan-Martin-Wang IPCO 2017): A set X ⊆ Rn is
rationally MILP-representable if and only if

X =

x ∈ Rn :

f1(x) ≥ 0
...

fk(x) ≥ 0


where f1, . . . , fk are rational Chvátal functions.

[1, 2] ∪ [3, 4] {
x ∈ R :

b x−1
2 c+ b−x+2

2 c ≥ 0
1 ≤ x ≤ 4

}



Representability of Mixed-Integer Ellipsoidal Regions

DEFINITION: Any set of the form

E = {x ∈ Rd : (x − c)TM(x − c) ≤ γ}

where M � 0, c ∈ Rd , and γ > 0, is called an ellipsoidal region. If
M � 0 then E is an ellipsoid.



Representability of Mixed-Integer Ellipsoidal Regions

DEFINITION: Any set of the form

E = {x ∈ Rd : (x − c)TM(x − c) ≤ γ}

where M � 0, c ∈ Rd , and γ > 0, is called an ellipsoidal region. If
M � 0 then E is an ellipsoid.

FACT: Any ellipsoidal region E is
the Minkowski sum of an
ellipsoid and rec(E ) = ker(M).

ker(M)
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S is the family of sets given by the mixed-integer points in the
intersection of an ellipsoidal region and a polyhedron.
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carefully. See Del Pia-Poskin paper for details.
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LEMMA: Let C be a closed convex set with a rational, polyhedral
recession cone generated by integral vectors r1, . . . , r t , expressed as
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I What is the recession cone of a set of the form E ∩ Q?

I Is K + Π of the form E ∩ P?

I Is the projection of a set of the form E ∩ P again of the form
E ′ ∩ P ′? I don’t know! Main technical difficulty. Del Pia and
Poskin show that it is of the form

⋃k
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Representability of General Convex Mixed-Integer Sets

S is the family of sets given by the mixed-integer points in a
general closed, convex set.

I Lubin, Zadik and Vielma attack this in a IPCO 2017 paper.

I Battle with irrationality gets severe.
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(The authors call such
sets X strongly nonconvex.)
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Representability of General Convex Mixed-Integer Sets

S is the family of sets given by the mixed-integer points in a
general closed, convex set.

THEOREM (Lubin, Zadik, Vielma IPCO 2017): Let X ⊆ Rn. If there
exists an infinite subset R ⊆ X such that for all x , y ∈ R such that
x+y

2 6∈ X , then X is not representable by S. (The authors call such
sets X strongly nonconvex.)

LEMMA (Lubin, Zadik, Vielma IPCO 2017): The primes, as a subset
of R, form a strongly nonconvex set.

COROLLARY (Lubin, Zadik, Vielma IPCO 2017): The primes are not
representable by S.



Representability of Bilevel Optimization Problems



Representability of Bilevel Optimization Problems

S is the family of sets given by sets of the form(x , y) ∈ Rm × Rd :

Ax + By ≤ b

y ∈ arg max

{
cT y :

Dy ≤ d − Cx ,
y ∈ Zd1 × Rd2

}
xi ∈ Z, i ∈ I ⊆ {1, . . . ,m}





Representability of Bilevel Optimization Problems

S is the family of sets given by sets of the form(x , y) ∈ Rm × Rd :

Ax + By ≤ b

y ∈ arg max

{
cT y :

Dy ≤ d − Cx ,
y ∈ Zd1 × Rd2

}
xi ∈ Z, i ∈ I ⊆ {1, . . . ,m}



We say that a set X ⊆ Rn is mixed-integer bilevel representable if
there exists S ∈ S and a linear transformation T such that
X = T (S).



Representability of Bilevel Optimization Problems

S is the family of sets given by sets of the form(x , y) ∈ Rm × Rd :

Ax + By ≤ b

y ∈ arg max

{
cT y :
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We say that a set X ⊆ Rn is mixed-integer bilevel representable if
there exists S ∈ S and a linear transformation T such that
X = T (S).

Rationality will play a role again.
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(x , y) ∈ Rm × Rd :
Ax + By ≤ b

y ∈ arg max

{
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y ∈ Rd1 × Rd2

} 
Linear Complementarity Problem{
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0 ≤ x ⊥ Mx + q ≥ 0

}
THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let X ⊆ Rn. Then
the following are equivalent:

(i) X is continuous bilevel representable.

(ii) X is linear complementarity representable.

(iii) X is a finite union of polyhedra.
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Add the integrality constraints

Observation 1: If the integrality is added only in the upper level,
then we get a union of MILP-representable sets.

(x , y) ∈ Rm × Rd :

Ax + By ≤ b

y ∈ arg max

{
cT y :

Dy ≤ d − Cx ,
y ∈ Rd

}
xi ∈ Z, i ∈ I ⊆ {1, . . . ,m}


COROLLARY (Basu-Ryan-Sankaranarayanan 2018): A set X ⊆ Rn is
upper level integer bilevel representable if and only if X is a finite
union of MILP-representable sets.
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Observation 1: If the integrality is added only in the upper level,
then we get a union of MILP-representable sets.

Observation 2: If the integrality is added in the lower level, then
we may get a set that is not topologically closed even under
rational data.

EXAMPLE (Ryan-Koeppe-Queyranne JOTA 2010):(x , y) ∈ R× R :

0 ≤ x ≤ 1

y ∈ arg max

y :
y ≤ x ,
0 ≤ y ≤ 1
y ∈ Z
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X = cl(S) for some S ⊆ Rn that is rational mixed-integer bilevel
representable if and only if X is a finite union of rationally
MILP-representable sets.
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THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let X ⊆ Rn. Then
X = cl(S) for some S ⊆ Rn that is rational mixed-integer bilevel
representable if and only if X is a finite union of rationally
MILP-representable sets.

CAUTION: A finite union of MILP-representable sets is
not necessarily MILP-representable.
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Proof of Main Theorem

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let X ⊆ Rn. Then
X = cl(S) for some S ⊆ Rn that is rationally mixed-integer bilevel
representable if and only if X is a finite union of rationally
MILP-representable sets.

THEOREM (Blair/Jeroslow 1977, 1979, 1995): The value function of
a rational MILP is of the form

J(x) = max
i∈I

{
wT
i (x − EibE−1

i xc) + min
j∈J

ψj(EibE−1
i xc)

}
where I , J are finite index sets, Ei , i ∈ I are invertible matrices,
and ψj , j ∈ J are Chvátal functions. Such functions are called
Jeroslow functions.
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where J(x) is the value function of a rational mixed-integer linear
program.

Bottomline: Need to analyze sub/super level sets of Chvátal
functions.



Proof of Main Theorem

THEOREM (Basu-Ryan-Sankaranarayanan 2018): Let X ⊆ Rn. Then
X = cl(S) for some S ⊆ Rn that is rationally mixed-integer bilevel
representable if and only if X is a finite union of rationally
MILP-representable sets.

PROOF:(x , y) ∈ Rm × Rd :
Ax + By ≤ b
cT y ≥ J(x)
xi ∈ Z, i ∈ I ⊆ {1, . . . ,m}


where J(x) is the value function of a rational mixed-integer linear
program.
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ψ : Rn → R be a rational Chvátal function. Then the closures of
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PROPOSITION (Basu-Ryan-Sankaranarayanan 2018): Let
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Sub/super level sets of Chvátal functions

PROPOSITION (Basu-Ryan-Sankaranarayanan 2018): Let
ψ : Rn → R be a rational Chvátal function. Then the closures of
{x ∈ Rn : ψ(x) ≥ 0}, {x ∈ Rn : ψ(x) ≤ 0}, and
{x ∈ Rn : ψ(x) = 0} are all finite unions of MILP-representable
sets.

Recall algebraic characterization of MILP-representable sets:
{x ∈ Rn : ψ(x) ≥ 0} is a rational MILP-representable set.

Suffices to show that {x ∈ Rn : ψ(x) ≤ 0} is a finite union of
rationally MILP-representable sets (up to closures).

Boils down to checking the following

LEMMA (Basu-Ryan-Sankaranarayanan 2018): Let X be a rational
MILP-representable set. Then the complement of X is a finite
union of rational MILP-representable sets (up to closures).
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Complement of MILP-representable set

LEMMA (Basu-Ryan-Sankaranarayanan 2018): Let X be a rational
MILP-representable set. Then the complement of X is a finite
union of rational MILP-representable sets (up to closures).

Need to analyze(
k⋃

i=1

Pi + M

)c

=

(
k⋃

i=1

(Pi + M)

)c

=
k⋂

i=1

(Pi + M)c

Since intersection of MILP-representable sets are
MILP-representable sets, it suffices to show that given any
polytope P and a finitely generated integral monoid M, the set
(P + M)c is a finite union of rationally MILP-representable sets
(up to closures).
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independent set of vectors.
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(P + M)c is MILP-representable

What if the finitely generated monoid M is not generated by
linearly independent vectors?

I Consider C = cone(M). Write C =
⋃k

i=1 Ci

where Ci are simplicial. Extreme rays of Ci are
in M. Define Mi = Ci ∩M. Note that
M =

⋃k
i=1 Mi .

I By results of Jeroslow 1978, each Mi can be
written as a finite union of monoids whose
generators are extreme rays of Ci .

I But since Ci are constructed to be simplicial,
extreme rays of Ci are linearly independent. So
each Mi is a finite union of monoids that are
linearly independent.
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each Mi is a finite union of monoids that are
linearly independent.



Open Questions

I Sizes of bilevel formulations: Is there a MILP-representable
subset of Rn that needs exponential (in n) sized MILP
formulations, but has a polynomial size mixed-integer bilevel
formulation? Can be asked about the hierarchy of n-level
mixed-integer formulations.

I Representability of mixed-integer points in intersections of
convex quadratic constraints.



THANK YOU !

Questions/Comments ?


